Effect of irrigation, FYM levels and storage conditions on oil constituents of European Dill (Anethum graveolens L.)

Vineeta*1, Kewalanand², Vandana³ and Vishwanath⁴

*Department of Agronomy, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar, Udham Singh Nagar, Uttarakhand-263145 (India) Email: vineetaagron@gmail.com

ABSTRACT

A field cum laboratory experiment was conducted at G.B.P.U.A.&T., Pantnagar, Uttarakhand to study the effect of irrigation and FYM levels as well as storage conditions on oil constituents viz., limonene, carvone and dillapiole of medicinal European Dill plant during the two successive seasons of 2005/2006 and 2006/2007. For this, a experiment based on factorial randomized block design having 3 replications was carried out with treatments, viz irrigation scheduling at 4 mm CPE (cumulative pan evaporation) levels (50, 100, 150 and 200) with 6 cm of irrigation water and 3 FYM (farmyard manure) levels (0, 15 and 30 tonnes/ha) in field and in laboratory, seed was stored in cotton bag at room temperature, cotton bag in deep fridge, ploythene bag at room temperature and polythene bag in deep fridge. Present investigation revealed that oil constituents were found to be significantly higher due to irrigation at 100 mm CPE and fertilized with 15-30 tonnes FYM/ha and can be stored in polythene or polythene lined bag at room temperature to maintain the oil quality.

Key words: European Dill, Oil constituents, Storage condition, Irrigation, FYM

European dill (*Anethum graveolens*) is one of an annual aromatic and medicinal plant belonging to the *Apiaceae* (*Umbelliferae*) family, commonly known as *vilayati saunf* in India. European dill is well known for essential oil present in this having medicinal properties like mildly diuretic, galactogogue, stimulant and stomachic¹¹. The oil of dill fruits and its

emulsion in water (dill water) are considered to be aromatic, carminative (useful in flatulence, especially for infants), colic pains, vomiting and hiccups¹². The seeds are common and very effective household remedy for a wide range of digestive problems⁹ and infusion of seeds is especially efficacious in treating gripe in babies and flatulence in young children. The seed oil is considered to be of good quality due to presence of more carvone and least dillapiole. The major constituents of European dill seed oil are carvone (34.5%), dihydrocarvone (12.0%), limonene (10.0%), terpinene (6.0%), carveol (4.0%), dillapiole (3.0%) and some trace compounds. Higher carvone and limonene contents and negligible dillapiole content in oil has been reported of good quality⁵. The dillapiole is considered to be toxic to human consumption at more than 5% in essential oil and thus, the quality of essential oil is considered better if dillapiole content in the oil varies between 0 to 5%.

European dill has a good demand in the country and recently it has also developed great potential for export in the international market. Because of its diversified uses and good source of foreign exchange the present investigation was done to improve the quality of essential oil with judicious water management and good nutrient supply which play important role and also by providing favorable storage condition to store the seeds.

The field experiment was conducted in two *rabi* seasons (December to May) during 2005-07 at Norman E. Borlaug Crop Research Centre, G.B.P.U.A.&T., Pantnagar, Uttarakhand, India then biochemical analysis of oil is carried out in lab. In field, 4 levels of irrigation scheduled at 50 (I₅₀), 100 (I₁₀₀), 150 (I₁₅₀) and 200 (I₂₀₀) mm CPE and 3 levels of soil fertility *viz*, 0 (F₀), 15 (F₁₅) and 30 (F₃₀) t FYM ha⁻¹, treatments were evaluated in factorial randomized block design with three replications. Post-sowing irrigations of 60 mm depth and well decomposed and pulverized farmyard manure were applied as per treatments two days before sowing and mixed uniformly and thoroughly by digging with the help of spade. Irrigation treatments were executed by providing irrigation channels between the plots. One common irrigation was given in each plot after 25 days of sowing for proper crop establishment. Subsequent irrigation treatments were scheduled based on cumulative pan evaporation (CPE) data. Irrigation water was measured with the help of Parshall flume under free flow conditions fixed in the irrigation channel to provide water upto 6 cm depth of soil at each irrigation. Depending upon rainfall, number of irrigation needed in I₅₀, I₁₀₀, I₁₅₀, I₂₀₀ treatments during first and second year were 4, 2, 1, 1 and 7, 3, 2, 1, respectively. After proper sun drying, the umbels were threshed manually. Thereafter, the seeds were collected, cleaned and weighed. The crop quality was judged by extracting oil from seeds and active principles present in oil.

Essential oil was distilled from seeds after threshing and stored for 30 days in different conditions like cloth bag at room temperature (CBRT), cloth bag in deep fridge (CBDF), polythene bag at room temperature (PBRT) and polythene bag in deep fridge (PBDF). For obtaining seed oil, water distillation method using Clevenger's type glass distillation apparatus was used. Essential oil samples were analyzed for determination of active principles in oil *i.e.* carvone using Gas-liquid chromatography. The filtered dehydrated oil was used for analysis. The RF value of pure carvone was obtained by injecting 0.2μ ml of pure liquid carvone (standard) with micro syringe, which was diluted 4 times with ethanol.

After getting constant RF value, 0.2μ ml of each oil sample was injected three times. The standard conditions for running the GLC were:

First oven temperature :	240°C	Second oven temperature :	230°C
Injector temperature :	245°C	Oil temperature :	235°C
Detector temperature :	250°C	Hydrogen flow rate :	40 ml/ minute
Oxygen flow rate :	400 ml/ minute	Nitrogen flow rate :	18 ml/ minute
Column material :	Carbo-bax 10%	Column dimension :	$\frac{1}{8}$ inch ×6 feet

The area percentage obtained in chromatographs was taken as percentage of the constituents. The percentage of major constituents *viz.*, carvone, limonene and dillapiole obtained from 3 readings were used for statistical analysis for treatments comparison. The statistical analysis of the data was done by following the procedure for analyzing Factorial Randomized Block Design². The critical difference for comparing the treatment means at 5% level of probability was computed wherever the F-test was significant.

1. Limonene content (%):

Fresh seeds :

Limonene content in oil obtained from fresh seeds was found to increase significantly when collected from 50 mm CPE irrigation treatment compared to remaining irrigation treatments during both the years. A significant increase in limonene contained in oil obtained from the seeds collected from increasing levels of FYM was noticed during both the years (Table-1).

Thirty days stored seeds :

The oil obtained from the seeds collected from 200 mm CPE irrigation treatment and stored in CBRT and PBRT had significantly more limonene content compared to remaining treatments during both the years. When seeds were kept in CBDF the limonene content was found to be significantly more in seeds collected from 150 mm CPE irrigation treatment in both the years. Limonene content in oil obtained from the seeds collected from 100 mm CPE irrigation level and kept in PBDF during both the years was found to be significantly more.

(160)

			30 days stored seeds								
Treatments	Fresh seeds		CBRT		CBDF		PBRT		PBDF		
	Ι	I	Ι	I	Ι	I	Ι	Π	Ι	Π	
Irrigation levels (mm CPE)											
50	7.250	7.395	2.684	2.732	2.075	2.127	0.612	0.625	3.278	3.340	
100	6.517	6.647	1.190	1.211	2.642	2.708	1.371	1.401	5.316	4.279	
150	6.564	6.695	1.026	1.044	3.173	3.252	5.323	5.440	1.202	1.225	
200	6.156	6.279	4.430	4.510	1.042	1.068	6.506	6.649	1.448	1.176	
C.D. at 5 %	0.005	0.005	0.004	0.004	0.003	0.003	0.003	0.003	0.002	0.002	
FYM levels (t ha ⁻¹)											
0	6.738	6.873	2.300	2.341	2.222	2.278	4.604	4.705	4.375	4.458	
15	6.273	6.398	2.233	2.263	2.227	2.283	3.447	3.523	2.852	2.906	
30	6.854	6.991	2.466	2.510	2.249	2.305	2.309	2.360	1.207	1.230	
C.D. at 5 %	0.004	0.004	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.002	

Table-1. Limonene content (%) in fresh and 30 days stored seeds of European Dill under different conditions as influenced by the treatments

The oil in the seeds stored in CBRT or CBDF showed significant increase in limonene content with increasing levels of FYM. Limonene content showed reverse trend to this when stored in PBRT or PBDF during both the years.

2. Carvone content (%):

Fresh seeds :

Oil obtained from fresh seeds contained significantly more carvone content

when irrigation was scheduled at 200 mm CPE level and application of 15 t FYM ha⁻¹ resulted in significantly more carvone content in oil compared to remaining FYM levels during both the years (Table-2).

Thirty days stored seeds :

Oil from CBRT stored seeds contained similar carvone when seeds were collected from irrigation treatment at 100 and 150 mm CPE level but significantly more during both the years.

(161)

			30 days stored seeds								
Treatments	Fresh seeds		CBRT		CBDF		PBRT		PBDF		
	Ι	I	Ι	Π	Ι	Π	Ι	Π	Ι	Π	
Irrigation levels (mm CPE)											
50	83.202	84.866	84.765	86.291	87.544	89.933	88.344	90.286	86.699	88.346	
100	83.493	85.163	87.050	88.617	87.766	89.960	89.370	91.336	85.126	86.743	
150	82.949	84.608	87.138	88.706	86.822	88.993	84.285	86.139	88.623	90.307	
200	83.964	85.643	81.782	83.254	86.317	88.475	78.556	80.284	88.594	90.278	
C.D. at 5 %	0.021	0.021	0.486	0.495	0.060	0.061	0.099	0.101	0.030	0.031	
FYM levels (t ha ⁻¹)											
0	82.084	83.726	84.450	85.970	85.445	87.581	83.888	85.733	85.895	87.527	
15	84.211	85.895	85.090	86.623	87.335	89.518	85.055	86.926	87.150	89.565	
30	83.911	85.589	86.010	87.558	88.556	90.770	86.474	88.376	88.759	90.445	
C.D. at 5 %	0.018	0.017	0.421	0.429	0.052	0.052	0.085	0.087	0.026	0.027	

 Table-2. Carvone content (%) in fresh and 30 days stored seeds of European Dill under different conditions as influenced by the different treatments

Oil obtained from the seeds stored in CBDF contained similar carvone content when seeds were collected from 50 and 100 mm CPE irrigation levels but significantly more compared to remaining irrigation treatments whereas, carvone content in the oil obtained from seeds stored in PBRT was found to be significantly more when collected from irrigation scheduled at 100 mm CPE and in PBDF increased significantly when collected from 150 and 200 mm CPE irrigation levels during both the years. In all the seed storage conditions, carvone content in oil from 30 t FYM ha⁻¹ was significantly highest during both the years.

3. Dillapiole content (%) :

Fresh seeds :

In fresh seed oil, dillapiole content was found to increase significantly with increase in CPE levels upto 150 mm CPE and decreased significantly with further increase in CPE levels also increasing levels of FYM caused significant decrease in dillapiole content in fresh seeds oil during both the years (Table 3).

Thirty days stored seeds :

Dillapiole content in CBRT, CBDF and PBRT stored seeds oil increased significantly when seeds were collected from increasing levels of CPE for scheduling irrigation during both the years.

			30 days stored seeds								
Treatments	Fresh seeds		CBRT		CBDF		PBRT		PBDF		
	Ι	Π	Ι	Π	Ι	Π	Ι	Π	Ι	Π	
Irrigation levels (mm CPE)											
50	4.201	4.285	4.282	4.359	5.052	5.178	4.810	4.916	4.935	5.029	
100	4.638	4.731	5.182	5.275	3.929	4.027	4.136	4.270	5.203	5.302	
150	5.014	5.114	5.445	5.543	4.776	4.895	5.170	5.284	4.134	4.203	
200	4.838	4.935	7.168	7.297	7.176	7.355	8.898	9.094	4.090	4.168	
C.D. at 5 %	0.003	0.003	0.004	0.004	0.005	0.005	0.003	0.003	0.013	0.013	
FYM levels (t ha ⁻¹)											
0	5.370	5.477	6.072	6.181	6.229	6.385	5.701	5.826	5.092	5.189	
15	4.539	4.630	5.516	5.615	5.196	5.326	5.744	5.870	4.684	4.773	
30	4.109	4.191	4.970	5.059	4.204	4.309	5.817	5.945	3.997	4.073	
C.D. at 5 %	0.003	0.003	0.003	0.003	0.005	0.005	0.003	0.003	0.010	0.010	

 Table-3. Dillapiole (%) in fresh and 30 days stored seeds of European Dill under different conditions as influenced by the treatments

In PBDF stored seeds oil, dillapiole content increased significantly when seeds were collected from increasing levels CPE upto 100 mm CPE irrigation treatment during both the years. Increasing levels of FYM caused significant decrease in dillapiole content in oil from the seeds stored in different conditions during both the years except seeds stored in PBRT, where application of 30 t FYM ha-1 caused significant increase in dillapiole content compared to remaining FYM treatments.

Among oil constituents, fresh seed oil contained significantly higher limonene when seeds were collected from 50 mm CPE (Table 1), carvone when seeds were collected from 200 mm CPE (Table-2) and dillapiole when seeds were collected from 150 mm CPE irrigation treatments (Table-3).

The present investigation has resulted in 83.9 to 85.6 % carvone in fresh seeds oil due to irrigating the crop at 200 mm CPE level. In this treatment, limonene and dillapiole were found least. It is indicative of more conversion of limonene and dillapiole into carvone. Rate of development conversion to oxygenated compounds has been found to get enhanced under moisture stress¹⁰. Higher carvone in 200 mm CPE irrigation treatment may also be due to higher oil content. In the present investigation dillapiole content decreased with decreasing CPE levels of irrigation and increasing levels of farmyard manure. It suggested that judicious application of irrigation water and organic manures not only increase the yield but also enhance the quality of oil by reducing dillapiole and increasing limonene and carvone content.

Forouzandeh³ revealed that drought stress led to increased essential oil and oil constituents percentage, whereas the greatest percentage obtained when 60% FC was applied. The oil constituents showed varying trend with storage conditions for 30 days. Seeds stored in CBRT and PBRT had significantly higher limonene content when collected from 200 mm CPE irrigation treatment while oil from CBDF stored seeds had highest limonene at 150 mm CPE irrigation treatment. In case of oil from PBDF stored seeds, the limonene content was found significant higher when seeds were collected from 100 mm CPE level. These variations suggest that certain changes in oil constituents took place under different storage conditions. Gupta⁶ has suggested to store the dill seeds in polythene lined cloth bag to save the losses of terpenoids in oil. Reverse trend was noticed for dillapiole during both the years. It seems that limonene and dillapiole conversion was enhanced towards carvone during the storage conditions where carvone was found higher. Sakongoy¹³ observed higher oxygenated compounds during storage at the expense of terpenes. In the present investigation oxygenated fraction (carvone content) also increased under storage compared in the oil of fresh seeds.

Farmyard manure at its higher levels

 $(15 \text{ to } 30 \text{ t ha}^{-1})$ is expected to provide about 75, 37.5 and 75 Kg NPK ha⁻¹ (15 t FYM ha⁻¹) and 150, 75 and 150 Kg NPK ha⁻¹ (30 t FYM ha⁻¹), thus meeting the total nutrients requirement of the crop. In addition, it provides micronutrients which are essential for plant growth and secondary metabolites synthesis⁴. Present study also supported this as the oil constituents like limonene and carvone increased with increase in farmyard manure levels in fresh seeds. However, in 30 days stored seeds limonene content decreased. When stored in CBRT and CBDF, it was found more due to application of 30 t FYM ha⁻¹ but reverse was the trend when seeds were stored in PBRT and PBDF. It shows that during storage the limonene underwent conversion to carvone¹. Due to increasing levels of farmyard manure significant enhancement in carvone percentage was noticed in stored seeds compared to fresh seeds⁸. This may be because of more increase in total oxygenated compounds during storage⁷. Dillapiole has been found to increase with storage at the expense of terpenoids⁶. Unstability of dillapiole in oil of PBDF stored seeds was observed as it was found to reduce compared to fresh seeds. It may be due to more carvone content in PBDF stored seeds as carvone content has inverse relationship with dillapiole content.

On the basis of present study, it can be concluded that European dill may be irrigated at 100 mm CPE depends on rainfall and fertilized with 15-30 t FYM ha⁻¹. Also, seeds may be stored for a month in polythene or polythene lined bags under room temperature without loss of oil quality. References :

- Bochra Laribi, Karima Kouki, Sahli Ali, Mougou Abdelaziz and Marzouk Brahim (2011). Advances in Environmental Biology 5(2): 257-264.
- Cochron W. G. and G. M. Cox (1966). Experimental Design, 2nd edition. John Wiley and Sons, Inc., New York.
- 3. Forouzandeh Mohamad, Morteza Fanoudi, Elias Arazmjou and Hossin Tabiei (2012). Indian Journal of Innovations and Developments 10(1): 734-737.
- Gendy A.S.H., Said-Al Ahl H.A.H. and A. Mahmoud Abeer (2012). Australian Journal of Basic and Applied Sciences 6(5): 1-12.
- Guenther, E. (1949). The Essential Oils. Vol. III. pp. 640-676. D. Van Nostrand Co. Inc., New York.
- Gupta, R. (1982). Studies in cultivation and improvement of dill (Anethum graveolens)

in India. Cultivation and utilization of Aromatic Crops edited by C.K. Atal and B. M. Kapoor. pp. 445-458.

- 7. Jana, S. and G. S. Shekhawat (2010). *Pharmacogn Review* 4(8): 179–184.
- Jinesh, V.K., V. Jaishree, Shrishailappa Badami and W. Shyam (2010). *Indian J. Nat Prod Res 1(2)*: 168-173.
- 9. Kaur, G.J. and D.S. Arora (2010). J. Med Plant Res. 4: 87-94.
- Putievsky, E., U. Ravid and N. Dudai (1990). Journal of Essential Oil Research 2 (3): 111-114.
- 11. Radulescu, Valeria, Lidiapopescu, Maria, Diana-Carolina Lies. (2010). *Farmacia* 58 (5): 594-600.
- Singh, Sumitra (2012). Journal of Chemical and Pharmaceutical Research 4(9): 4156-4160.
- 13. Sokhangoy, S. H., Kh. Ansari and D. Eradatmand Asli (2012). *Iranian Journal of Plant Physiology 2 (4):* 547-552.