Second International conference on "Biodiversity: Exploration, Exploitation and Conservation for sustainable development" was organized by the department of Botany, in association with the Department of Zoology & IQAC, PDUAM-Behali, Assam, India on 10-11th February, 2023.

Ethnomedicinal practices among ethnic groups in Marat Longri Wildlife sanctuary, Assam- A quantitative study

Urmika Phanchopi¹, Valentina Teronpi^{2*}, Robindra Teron³ and Ajit K. Tamuli⁴

¹Department of Botany, Namrup College, Parbatpur, Dibrugarh, Assam-786633 (India) ²Department of Zoology, Pandit Deendayal Upadhyay Adarsha Mahavidyalaya, Behali, Biswanath, Assam-784184 (India)

 ³Director, Northeastern Institute of Ayurveda & Folk Medicine Research (NEIAFMR), High Region, Pasighat, East Siang District, Arunachal Pradesh-791102 (India)
⁴Department of Life Science & Bioinformatics, Assam University-Diphu Campus,

Diphu, Karbi Anglong, Assam-782462 (India) *Corresponding author: teronpivalentina@gmail.com

Abstract

Ethnomedicine deals with the study of medical practices in cultural societies. Studies on ethnomedicine are very important as it offers a source for the discovery of new drugs. The present work was designed to document plant species used as medicine by local medicinemen and inhabitant in Marat Longri Wildlife Sanctuary, Assam. Data were collected through semi-structured interview method during the year 2020–2021. Forty (40) medicinemen from four reserved forests (Mijungdisa, Disama, Kaki and Inglongkiri) in Marat Longri WS were interviewed for collection of ethnomedicinal information. Plants used in healing practices including the method of formulation and doses were recorded. Data was analyzed using Informant Consensus Factor (Fic), Fidelity Level (FL), Relative Frequency Citation (RFC) and Use Value (UV). A total of 45 plants prescribed by medicinemen for 18 ailments have been documented. Informants showed high consensus for 45 plants ranging from 0.72 to 1.00, which is indicative of high effectiveness of the ethnomedicine for the disease. One plant Mikania micrantha showed 100% FL suggesting these has great importance for a particular disease. Higher value of RFC (1.00) for 9 plants explains their local importance as therapeutic source. Mikania micrantha showed highest UV². The study indicated ethnic groups in Marat Longri WS possess valuable traditional knowledge of therapeutic plants and animals as source remedies. Meanwhile, biodiversity of the sanctuary has been greatly threatened by various factors and thus present a case for their conservation.

Key words : Quantitative ethnobotany, Marat Longri Wildlife Sanctuary, ethnomedicine, informant consent.

Ethnomedicinal practices have been a source of healing people for millennia²³. This multi-disciplinary complex system was established by the use of plants and animals, holiness and natural environment¹⁹. According to WHO³⁵, 80-90% of the world population uses natural preparations and traditional medicines for their primary healthcare. Studies on ethnomedicine are often significant as it provides lead for discovery of new drugs from local plant source³⁵.

The Northeast (NE) region of India (21°34'N to 29°50'N latitude and 87°32' E to 97°52'E longitude) is known for its biological diversity, which is the Biogeographical Gateway to India and finds its place in part of two-biodiversity hotspots in India³³. Owing to the rich biodiversity, the traditional communities living in Northeast India have built an invaluable information about the use of their rich bioresources. The region has a strong legacy of ethnomedicinal practices, which have become an integral part of its indigenous culture. There are numerous literatures documenting the ethnomedicinal practices by the indigenous communities of Northeast India^{6,9,10,18,21,22,24}, Most of these documentations, list of medicinal plants of a particular region or community is given and not much focus has been given on the quantitative techniques, also called quantitative ethnobotany, for analysis of data. Quantitative ethnobotany describes the variables quantitatively and analyze the observed patterns to test different hypotheses about the relationship between plant species and humans^{3, 14}. Cox & Balick³¹ and Cordell⁸ stated that quantitative ethnobotanical methods play an important role in biodiversity prospecting. Appropriate selection of important medicinal plants is a requirement to initiate the ethnopharmacological, phytochemical and toxicological studies due to huge laboratory cost⁷. For this reason, it is very important to determine the species that are most used to treat a particular disease. A useful tool to find a specific plant is the Informant Consensus Factor^{4, 11}.

In Karbi Anglong district, which is also known as the hill district of Assam, ethnomedicinal practice is the leading healthcare practice practiced among the hill communities. Therefore, the present investigation was aimed to study medicinal uses of plant species using ethnobotanical indices in *Marat Longri* Wildlife Sanctuary in Karbi Anglong district, Assam, which could provide leads to finding potential drugs.

Methodology:

Marat Longri WLS (25°47'-25°59' N and 93°08'-93°21' E) in Karbi Anglong district, Assam was recognized on 17th April 2003 with a geographical area of 451.00 sq. km. As per 2011 census, total population in the study area is 4361 (male: 2283; female: 2078). The sanctuary comprises of four reserved forests (RF) namely Mijungdisa RF, Disama RF, Kaki RF and Inglongkiri RF¹³ (Figure 1). The vegetation type in the sanctuary are semievergreen forest and moist-deciduous forest. The sanctuary is an integral part of Dhansiri-Lumding elephant reserve. The sanctuary is natural habitat of seven ethnic communities' viz. Karbi, Dimasa, Hmar, Garo, Chakma, Nepali and Adivasi since many years²⁵ and forest forms the chief source of survival (food, nutrition, medicines, recreation and livelihoods). Food insecurity is a severe problem in the sanctuary as agricultural land is scarce and *jhum* production is not adequate for the whole year. People had to collect forest resources (leaves, fruits, tubers, roots, bush meat, insect etc.) from the sanctuary to meet their food requirement and tide over hungry season.

Data Collection: Field survey was carried out during September 2020 to December 2021 in *Marat Longri* WLS. Ethnomedicinal data were collected through participatory approach and direct observation in the field⁵. ²⁰. Semi-structured interview method was followed to record ethnomedicinal use of plants. Sixty households from randomly selected 20 villages (5 villages from each Reserved Forest)

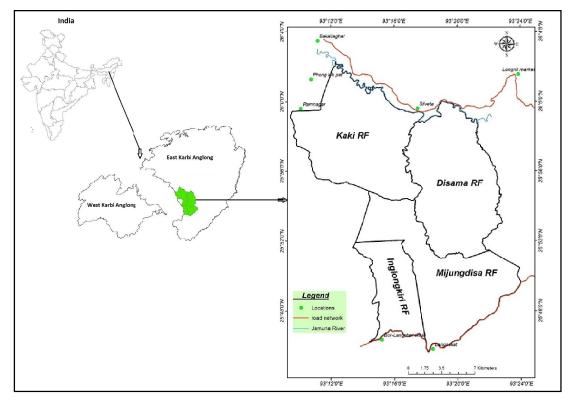


Figure 1. Map of Marat Longri WLS

were visited to record ethnomedicinal plants used; list of plants and animals was prepared through free listing. The informants were mostly elders of age groups 40 to 65 years. We conducted forest walks with key informants to study the distribution, diversity and ecology of medicinal species. Medicinal plants collected during filed investigation were identified with the help of floras^{2,12,17,26,27,28,29,30}. Identification of the recorded species was authenticated at Assam Herbarium, Botanical Survey of India, Shillong. Nomenclature and family delimitation for the recorded plants were updated using online database The Plant List (www.theplantlist.org). The specimens were processed according to Jain & Rao¹⁶.

Data Analysis :

Informants' Consensus Factor (*FIC*): Degree of similarity between information given by different informants was calculated by FIC³⁴ using the formula:

FIC = Nur - Nt / (Nur - 1)

Where, Nur = number of use reports from informants for a particular plant-use category;

The fidelity level (FL): To find the percentage of informants stating the use of a certain plant for the same major purpose, was calculated for the most frequently reported diseases as:

FL (%) = $(N_P / N) \times 100$

Nt = number of taxa or species that are used for that plant use category for all informants. FIC Values range between 0 and 1, where '1' indicates the highest level of informant consent. Where, N_P = number of informants that claim a use of a plant species to treat a particular disease;

N = number of informants that use the plants as a medicine to treat any given disease¹.

Relative frequency citation (RFC): The reported medicinal evidence was quantitatively analyzed using an index of RFC as:

Use value (UV): UV proves the comparative position of plants known locally and was calculated using the formula as^{32} :

 $UV = \Sigma U_i / N$

Where, U_i = Number of uses mentioned by each informant for a given species

N = Total number of informants.

A total of 45 plants belonging to 45 genera of 26 families (Table-1) prescribed by local medicine men for 18 ailments have been documented from the sanctuary. Out of 45 plants, 28 were use as oral application and the rest 17 as external applications. (Table-1). The family Asteraceae6 had the highest representation of ethnomedicinal plants followed by Leguminosae³, Cucurbitaceae², Lamiaceae² and Solanaceae²; the remaining families were represented by 1 plant each. Most recorded medicinal plants are herbs (50%) followed by trees (22.72 %), climbers (13.63 %) and shrubs (15.05 %). The habitat distribution of recorded medicinal plant species included terrestrial (75%), aquatic (9.09%) and marshy system (15.9 %). Leaves (41%) are the frequently used plant part, followed by fruits (9%), root (9%), whole plant (6%), stem (2%), petiole (1%), and bark (1%) which are presented in Figure 2. The herbal preparations

are administered in various methods by the inhabitant of the sanctuary. Most common preparation and administration methods used were decoction, paste, steam inhalation, herbal juice and powdered drug. Most of the recorded herbal preparation are taken orally (23%) than external or topical (23%) application.

Table-1. Medicinal plants of Marat Longri WLS with scientific name, vernacular name,	
parts used ailments and mode of administration	

	parts used, ailments and mode of administration.								
	Name of plants	Local	Part use	Ailments	Mode of				
	[Family]		name		administration				
1.	Acacia concinna (Willd.)	Sirhup-	Leaves and	Skin	Paste of leaf and fruit				
	DC. [Leguminosae]	arikang	fruits	disease	applied externally				
2.	Acorus calamus L.	Lang	Rhizome,	Gastrointes-	Juice of rhizome taken				
	[Acoraceae]	abab	leaf	tinal, fever,	orally for diarrhea and				
				cold and	fever. Leaf aroma is inhaled				
				cough	by children during cold.				
3.	Alternanthera sessilis (L.)	utukreng	Tender shoot	Jaundice	Juice taken orally				
	R.Br. ex DC.								
	[Amaranthaceae]								
4.	Aristolochia saccata Wall.	Ri-etso	Root	Jaundice	Juice taken orally				
	[Aristolochiaceae]								
5.	Bauhinia racemosa Lam.	Ngku-	Bark,	Gastrointes-	Juice of bark and leaf				
	[Leguminosae]	kelok	leaf	tinal	taken orally				
6.	Blumea lanceolaria	Hanm-	Leaves	Analgesic	Leaf paste taken orally				
	(Roxb.) Druce	oiso							
	[Asteraceae]								
7.	Callicarpa arborea	Arhi	Bark	Skin disease	Bark paste applied				
	Roxb. [Lamiaceae)]	arong			externally				
8.	Capsicum annuum L.	Birikman	Fruit	Cool and	Raw fruit with curry taken				
	[Solanaceae]			cough	orally				
9.	Centella asiatica (L.)	Chong	Leaf	Gastroin-	Raw leaf taken orally				
	Urb. [Apiaceae)]	amok		testinal					
10.	Cheilocostus speciosus	I-u-po	Rhizome,	Urinary stone	Root is boiled and given in				
	(J.Koenig) C.D.Specht		stem	cases, ear-	urinary stone cases. Hot				
	[Costaceae]			ache	fomentation of stem juice				
					is used as ear-drop against				
					ear-ache				
11.	Chromolaena odorata	Bab	Leaf	Cut and	Leaf juice applied externally				
	(L.) R.M.King & H.Rob.	bongnai		wound					
	[Asteraceae]	Ŭ							
12.	Clerodendrum	Phark-	Tender	Hypertension	Tender shoot and leaf are				
	glandulosum Lindl.	lung	shoot		boiled and taken orally				
	[Lamiaceae]	0			5				
	L								

13.	<i>Coccinia grandis</i> (L.) Voigt [Cucurbitaceae]	Kaikruk	Leaf	Diabetes	Leaf juice taken orally
14.	Commelina benghalensis L. [Commelinaceae]	Kurveng	Stem	Ear ache	Stem juice applied externally
15.	Cynodon dactylon (L.) Pers. [Poaceae]	Bab duribon	Tender Shoot	Jaundice	Tender shoot applied externally
16.	Dendrocnide sinuata (Blume) Chew [Urticaceae]	Bab kangsam	leaf	Urinary disorder	Leaf is boiled and taken orally
17.	<i>Enhydra fluctuans</i> Lour. [Asteraceae]	Bab- kani	Tender shoot	Gastroin- testinal, skin disease	Raw leaf taken orally for diarrhea, also said to be good for eye site; leaf paste applied externally for skin disease.
18.	<i>Eupatorium cannabinum</i> L. [Asteraceae]	Ar-hi	Bark	Skin disease	Bark paste applied externally
19.	Hippochaete debilis (Roxb. ex Vaucher) Ching [Equisetaceae]		Whole plant	Skin disease	The plant is boiled with water and the water is taken as bath.
20.	<i>Ipomoea aquatica</i> Forssk. [Convolvulaceae]	Kormo- so	Tender shoot, leaf	Blood purification	Leafjuice taken orally
21.	Lantana × aculeata L. [Verbenaceae]	Bub nem-i	Whole plant	Constipation	Leaf juice with a little common salt and soda taken orally
22.	<i>Maranta arundinacea</i> L. [Marantaceae]	Ruiloru	Bulbs	Increase lactation	Raw or boiled bulb taken orally
23.	Mikania micrantha Kunth [Asteraceae]	Rikang	Leaf	Cut and wound	Leaf paste applied externally
24.	<i>Mimosa pudica</i> L. [Leguminosae]	Babt- herak	Root	Jaundice	Powder of root taken orally
25.	<i>Momordica charantia</i> L. [Cucurbitaceae]	Kang- koroi-so	Leaf and fruit	Gastroin- testinal	Leaf and fruit juice taken orally
26.	Monochoria hastata (L.) Solms [Pontederiaceae]	Antimi	Tender shoot and leaf	Curing boils	Leaf paste applied externally
27.	<i>Murraya koenigii</i> (L.) Spreng. [Rutaceae]	Theng- sakso	Leaf	Constipation	Paste of raw leaf taken orally
28.	<i>Musa × paradisiaca</i> L. [Musaceae]	Lorop	Inflores- cence	Diarrhea	Inflorescence is cooked as curry and taken orally
29.	<i>Nymphoides indica</i> (L.) Kuntze [Menyanthaceae]		Whole plant	Scurvy, fever, jaundice, skin disease	Plant is boiled with water and the water is taken orally for curing and relieving scurvy

					and also for reducing fever;
					and jaundice. Paste is applied
					externally for skin infection.
30.	Olax acuminata Wall.	Hanboka	Leaf	Skin disease	Leaf paste applied
	ex Benth. [Olacaceae]				externally
31.	Oroxylum indicum (L.)	Nopak-	bark	Jaundice	Paste of bark mixed with
	Kurz [Bignoniaceae]	ban			firewood ash is massage
				on the palm a	nd foot
32.	Oxalis corniculata L.	Vothung-	Whole	Antidote	Antidote
	[Oxalidaceae]	mekbop	plant		
33.	Paederia foetida L.	Rikang	Leaf	Gastroin	Leaf paste taken orally
	[Rubiaceae]	menthu		testinal	
34.	Persicaria hydropiper (L.)	Lang	Whole	Skin	Leaf paste applied
	Delarbre. [Polygonaceae]	birik	plant	disease	externally
35.	Phlogocanthus thyrflorus	Jok-an	Inflores-	Gastroin-	Cooked as chutney and
	Thyrsiflorus		cence	testinal	taken orally
36.	Phyllanthus emblica L.	Habit	Fruit	Gastroin-	Raw fruit taken orally
	[Phyllanthaceae]	thelu		testinal	
37.	Pistia stratiotes L.		Leaf	Skin disease	Leaf juice mixed with coconut
	[Araceae]				oil applied externally in
					chronic skin disease.
38.	Pogostemon benghalense	Hanbipo	Tender	Analgesic	Tender shoot is cooked as
	(Burm.f.) Kuntze		shoot		curry and taken orally
	[Lamiaceae]				
39.	Psidium guajava L.	Habit	Leaf	Gastroin-	Leaf juice taken orally
	[Myrtaceae]	suprime		testinal	
40.	Ranunculus sceleratus L.		Whole	Rheumatic	Plant Juice taken orally
	[Ranunculaceae]		plant	pain, expel	
				intestinal	
				worms	
41.	Scoparia dulcis L.		Root	Jaundice	Applied externally
	[Plantaginaceae]				
42.	Solanum aculeatissimum	Theso	Fruits	Dental pain	Smoke of fruits applied in
	Jacq. [Solanaceae]	kumbong			tooth ache
43.	Spilanthes acmella (L.) L.	Bab	Inflores-	Dental pain	Raw inflorescence is chew
	[Asteraceae]	chuki	cence		to relief dental pain
44.	Terminalia chebula Retz.	Siluka	fruit	Gastroin-	Raw fruit taken orally
	[Combretaceae]			testinal	
45.	Ziziphus jujuba Mill.	Bogori	Bark,	Gastroin-	Bark juice taken orally
	[Rhamnaceae]		fruit	testinal	

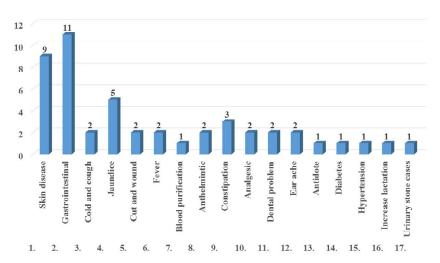


Figure 2. Number of plant species used for each ailment categories

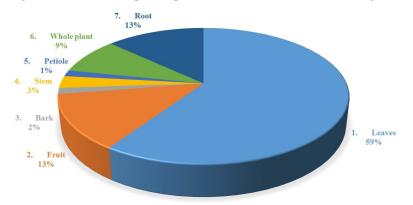


Figure 3. Pie graph representing number of plant part used

Data on quantitative ethnomedicinal uses:

Quantitative ethnobotanical methods do not replace qualitative methods but add rigor to the practice statistical analysis. Fic was analyses to find the degree of traditional knowledge among the informants in the study area regarding the use of medicinal plants to treat certain ailment categories.

Informant consensus factor (Fic): Fic values varied from 0.93 to 0.97 with an average value of 0.95 (Table-2). Gastrointestinal problem (305 use-reports for 11 plant species) and cold and cough (67 use-reports for 3 plant species) has the highest Fic value 0.97 each which is followed by Jaundice (Fic = 0.95; 142 use-reports, 7 species), Constipation (Fic = 0.94; 37 use-reports, 3 species) and Dermatological problem (Fic = 0.93; 108 use-reports, 9 species). Medicinal plants supposed to be effective in treating specific disease have high value of Fic. The high value of Fic for dysentery perhaps revealed that this ailment is common

(96)

Sl no.	Use categories	Number of	Number of	Consensus
		taxa (N _t)	use report (N _{ur})	factor
1.	Skin disease	9	30	0.72
2.	Gastrointestinal	11	40	0.74
3.	Jaundice	5	35	0.88
4.	Anthelmintic	2	25	0.95
5.	Constipation	3	30	0.96
6.	Analgesic	2	37	0.97
7.	Cold and cough	2	39	0.97
8.	Cuts and wound	2	40	0.97
9.	Dermatological	2	34	0.97
10.	Earache	2	29	0.97
11.	Fever	2	21	0.97
12.	Antidote	1	20	1.00
13.	Blood purification	1	15	1.00
14.	Diabetes	1	10	1.00
15.	Hypertension	1	40	1.00
16.	Increase lactation	1	32	1.00
17.	Rheumatic pain	1	15	1.00
18.	Urinary stone cases	1	5	1.00

Table-2. Categories of ailments and value of informant consensus factor (Fic) for each category

in the sanctuary due to poor sanitation and there is a better communication established among informants for treating this ailment category. The low value of Fic was recorded for Dermatological problem with Fic 0.93. This could be due to a lack of communication among people in different areas.

Fidelity level (%): The values of FL are presented in Table III. Highest FL is found in eight spp. Viz. Musa acuminata, Mikania micrantha Capsicum frutescens, Centella asiatica, Centella asiatica, Maranta arundinacea, Phyllanthus emblica, Psidium guajava and Terminalia chebula. The analyses of FL revealed that the above mentions species are the most frequently preferred medicinal plants with 40 use-reports and FL of 100% each. This signifies that these plants are the most effective ethnomedicinal species for treating gastrointestinal problem, cold and cough, and increase lactation. To determine the most frequently used medicinal plant for the treatment of certain ailment category, species with high FL (%) is selected.

		Ailments/disease	Citation for	Fidelity
Sl	Botanical name	condition	particular disease	level
no.			(use-report)	(%)
1.	Capsicum frutescens L.	Cold and cough	39	97.5
2.	Musa paradisiaca L.	Dysentery	40	100
3.	Clerodendron colebrookianum	Hypertension	39	97.5
	Walp.			
4.	Mikania micrantha HBK.	Cut and wound	40	100
5.	Centella asiatica (L.) Urban.	Diarrhoea	35	87.5
6.	Solanum aculeatissimum Jacq.	Dental pain	32	80.00
7.	Eupatorium odoratum L.	Cut and wound	30	75.00
8.	Paederia foetida L.	Diarrhoea	26	56.00
9.	Mimosa pudica L.	Jaundice	20	50.00
10.	Oroxylum indicum (L.) Benth.	Jaundice	15	37.5
	Ex Kurz.			

Table-3. Value of fidelity level (FL%) calculated among the most frequently

Relative frequency citation (RFC) and Use value (UV): The value of RFC and UV calculated for 45 medicinal plant species are presented in Table-4. The highest value of RFC ranked the 10 species namely Ziziphus jujuba, Phlogocanthus thyrflorus, Centella asiatica, Psidium guajava, Capsicum annuum, Clerodendrum glandulosum, Musa acuminata, Phyllanthus emblica, Terminalia chebula and Mikania micrantha with the value 1.00 each followed by Paederia foetida

(0.925) and Cynodon dactylon (0.85). This high value of RFC and UV indicate the trend of exploitation of herbal preparation in the study area as such value found from the recorded species specify the percentage of traditional knowledge in the utilization of medicinal plants to treat various ailments by the local inhabitants. This finding stated that, most of the inhabitants under the study area depend on herbal medicines for the primary healthcare practice.

used plant species

	Table-4. Value of RF	C and UV calculate	ed for 45	recorded s	pecies		_
Sl.	Name of plants	Ailments	No of	RFC	UR	ΣU,	UV
No.	[Family]		citation			20 _i	01
1.	Coccinia grandis (L.) Voigt	Diabetes	2	0.05	1	1	0.025
2.	Eupatorium	Skin disease	4	0.1	1	1	0.025
	cannabinum L.						
3.	Acacia concinna (Willd.) DC.	Skin disease	5	0.125	1	2	0.05
4.	Bauhinia racemosa Lam.	Gastrointestinal	3	0.075	1	2	0.05
5.	Hippochaete debilis	Skin disease	5	0.125	1	2	0.05
	(Roxb. ex Vaucher) Ching						
6.	Olax acuminata Wall. ex Benth.	Skin disease	9	0.225	1	2	0.05
7.	Oxalis corniculata L.	Antidote	2	0.05	1	2	0.05
8.	Callicarpa arborea Roxb.	Skin disease	7	0.175	1	3	0.075
9.	Dendrocnide sinuata	Anthelmintic	5	0.125	1	3	0.075
	(Blume) Chew						
10.	Oroxylum indicum (L.) Kurz	Jaundice	5	0.125	1	3	0.075
11.	<i>Pistia stratiotes</i> L.	Skin disease	9	0.225	1	4	0.1
12.	<i>Lantana</i> \times <i>aculeata</i> L.	Constipation	8	0.2	1	5	0.125
13.	Ranunculus sceleratus L.	Rheumatic pain,	3	0.075	2	5	0.125
		expel intestinal					
		worms					
14.	Alternanthera sessilis	Jaundice	14	0.35	1	6	0.15
	(L.) R.Br. ex DC.						
15.	Persicaria hydropiper	Skin disease	10	0.25	1	6	0.15
	(L.) Delarbre.						
16.	Aristolochia saccata Wall.	Jaundice	17	0.425	1	8	0.2
17.	Scoparia dulcis L.	Jaundice	16	0.4	1	9	0.225
18.	Pogostemon benghalense	Analgesic	25	0.625	1	10	0.25
	(Burm.f.) Kuntze						
19.	Commelina benghalensis L.	Ear ache	19	0.475	1	12	0.3
20.	Monochoria hastata (L.)	Curing boils	28	0.7	1	15	0.375
	Solms						
21.	Enhydra fluctuans Lour.	Gastrointestinal,	16	0.4	2	25	0.4
		skin disease					
22.	Ipomoea aquatica Forssk.	Blood purification	24	0.6	1	20	0.5
23.	Nymphoides indica (L.) Kuntze	Scurvy, fever,	6	0.15	4	20	0.5
		ioundias strin			1		

jaundice, skin disease

Jaundice

Jaundice

24.

25.

Cynodon dactylon (L.) Pers.

Mimosa pudica L.

0.85

0.7

34

28

24

24

1

1

0.6

0.6

(1	(00)
L		00)

26.	Blumea lanceolaria (Roxb.)	Analgesic	31	0.775	1	25	0.625
	Druce						
27.	Ziziphus jujuba Mill.	Gastrointestinal	40	1	1	25	0.625
28.	Momordica charantia L.	Gastrointestinal	31	0.775	1	28	0.7
29.	Spilanthes acmella (L.) L.	Dental pain	31	0.775	1	28	0.7
30.	Murraya koenigii (L.) Spreng.	Constipation	34	0.85	1	30	0.75
31.	Paederia foetida L.	Gastrointestinal	37	0.925	1	30	0.75
32.	Solanum aculeatissimum Jacq.	Dental pain	34	0.85	1	30	0.75
33.	Acorus calamus L.	Gastrointestinal,	15	0.375	3	35	0.875
		fever, cold and					
		cough					
34.	Phlogocanthus thyrsiflorus	Gastrointestinal	40	1	1	35	0.875
35.	Centella asiatica (L.) Urb.	Gastrointestinal	40	1	1	37	0.925
36.	Maranta arundinacea L.	Increase lactation	38	0.95	1	37	0.925
37.	Cheilocostus speciosus	Urinary stone	21	0.525	2	38	0.95
	(J.Koenig) C.D.Specht	cases, ear-ache					
38.	Psidium guajava L.	Gastrointestinal	40	1	1	38	0.95
39.	Capsicum annuum L.	Cool and cough	40	1	1	40	1
40.	Clerodendrum glandulosum	Hypertension	40	1	1	40	1
	Lindl.						
41.	<i>Musa × paradisiaca</i> L.	Gastrointestinal	40	1	1	40	1
42.	Phyllanthus emblica L.	Gastrointestinal	40	1	1	40	1
43.	Terminalia chebula Retz.	Gastrointestinal	40	1	1	40	1
44.	Chromolaena odorata (L.)	Cut and wound	37	0.925	2	74	1.85
	R.M.King & H.Rob.						
45.	Mikania micrantha Kunth	Cut and wound	40	1	2	80	2

The inhabitants of *Marat Longri* WLS have tremendous knowledge regarding exploitation of ethnomedicinal plants. Knowledge of ethnomedicinal use of plants is a legacy among the ethnic communities under study. The present investigation has found that the protected area under study has abundant medicinal plant species and ethnic communities living in and around the sanctuary are greatly reliant on plants for healthcare practices. Some medicinal plants have multiple uses; besides being used for healthcare practices, it is also used for various ethnobotanical purposes,

which pose a great pressure on these plants. Hence, local inhabitants should be trained about the sustainable utilization of medicinal plants. Moreover, the perseverance of indigenous knowledge regarding medicinal utilization is more among older generation than younger ones. As such, more studies on ethnomedicines must be carried out to protect such indigenous knowledge. Further, phytochemical analysis and clinical trials are recommended in order to assess the authenticity and effectiveness of ethnomedicines. Thus, in the present investigation a baseline data about the local medicinal plants has been generated, which is now ready to be further investigated phytochemically and pharmacologically that may lead to the discovery and development of new drug.

Authors are grateful to the people of *Marat Longri* WLS for their energetic contribution in the current work. We are thankful to field guides for their support and kindness throughout the exploration. We also acknowledge the Department of Forest and Environment, Karbi Anglong district for granting permission to undertake the present work in the Sanctuary.

References :

- 1. Alexiades M., Collecting ethnobotanical data: an introduction to basic concepts and techniques, (1996) New York, The New York Botanical Garden Press.
- Balakrishnan N P, (1981-1983) Flora of Jowai and Vicinity, Meghalaya. Vol. I & II. Botanical Survey of India, Calcutta.
- Bordoloi J, A Dihingia, J Kalita and P Manna, (2020) Ethnomedicinal Plants of North-East, India as a Potential Target for Drug Discovery Against Type 2 Diabetes Mellitus. In: Patra J., Shukla A., edited by Das G, Advances in Pharmaceutical Biotechnology (Springer, Singapore), p. 39-54. <u>https://doi.org/10.1007/978-981-15-2195-9_4</u>.
- Canales M, T Hernández, J Caballero, A R Vivar, G Avila, A Duran, and R Lira, (2005) *Journal of Ethnopharmacology*, 97(3): 429-439. doi:10.1016/j.jep.2004. 11.013
- 5. Chambers R, (1994) *World Development,* 22(9): 1253-1268.

- Choudhury R, P Dutta Choudhury, M Ningthoujam, S Das, D Nath and A Das Talukdar, (2015) *Journal Of Ethnopharmacology*, *166*: 135-148. doi: 10.1016/ j.jep.2015.03.026
- Cordell G A, (2000) *Phytochemistry*, 55(6): 463–480, doi:10.1016/s0031-9422(00)00230-2
- Cox P A and M J Balick, (1994) Sci Am. 270(6): 82-7.
- Das H B, K Majumdar, B K Dutta and D Ray, (2009) *Nat Prod Rad.*, 8(2): 172– 180.
- Dutta B K and B K Dutta, (2005) Indian Journal of Traditional Knowledge, 4(1): 7-14.
- 11. Frei B, O Sticher and M Heinrich, (1998) Journal of Ethnophamacology, 62 : 149-165.
- Hajra, P K, R R Rao, D K Singh and B P Uniyal, (1995) Flora of India, Vol. 12 & 13 Botanical Survey of India, Calcutta.
- 13. Heinrich M, (1998) *Journal of Applied Botany*, 7(1/2): 75-81.
- Höft M, SK Barik and AM Lykke, (1999) Quantitative ethnobotany, Applications of multivariate and statistical analyses in ethnobotany. In: People and plants working paper 6. UNESCO, Paris, p. 1– 49.
- 15. http://www.theplantlist.org
- 16. Jain S K and R R Rao (1977) A Handbook of Field and Herbarium Methods, Todays and Tomorrow Publishers New Delhi.
- Kanjilal U C, A Das, P C Kanjilal, N L Bor and R N De, (1934-1940) Flora of Assam, Vol. 1-5 Govt. of Assam, Shillong.
- 18. Leishangthem S and L D Sharma (2014), International Journal of Scientific and Research Publications, 4(9): 2250-3153.
- 19. Lowe H, and A Payne-Jackson, (2000)

Beckstrom-Sternberg SM and Duke J, Jamaica's Ethnomedicine, Its potential in the healthcare system. Canoe Press; University of the West Indies, Kingston, Jamaica. 170.

- 20. Martin G J, (1995) Ethnobotany: A Conservation Manual (Chapman and Hall, London).
- 21. Mipun P, N A Bhat, D Borah and Y Kumar (2019). *Ecol Process 8:* 41 <u>https://</u> <u>doi.org/10.1186/s13717-019-0194-4</u>
- 22. Mittermeier R A, G A B. Fonseca da, T Brooks, J Pilgrim and A Rodrigues, (2003) *American Scientist*, 91: 384.
- 23. Petrovska B B, (2012) 6(11): 1–5, doi: 10.4103/0973-7847.95849.
- 24. Pfoze N L, M Kehie, H Kayang and A A Mao (2014) *Journal of Medicinal Plants Studies*, 2: 92-104.
- 25. Phangchopi U, R Teron and A K Tamuli (2017): *Amb. Sc.* 4(1) :
- Prain D. (1903). Bengal Plants (Reprint: 1981), 2 Vols. Botanical Survey of India, Calcutta.
- 27. Rao A S and D M Verma, (1982) Cyperaceae of North-East India. Botanical Survey of India, Calcutta.

- Rao A S and D M Verma, (1972) Bulletin of the Botanical Survey of India 14(1-4): 114-143.
- 29. Rao A S and D M Verma, (1973) *Bulletin* of the Botanical Survey of India, 15(3-4): 189-209.
- Rao AS and D M Verma, (1974) Bulletin of the Botanical Survey of India 16(1-4): 1-20.
- Reyes-García V, T Huanca, V Vadez, W Leonard and D Wilkie, (2006) *Econ Bot* 60: 62–74.
- 32. Tardío J and M Pardo-De-Santayana, (2008) *Econ Bot.*, *62*(1) : 24–39.
- 33. Teklehaymanot T and M Giday, (2007) J. Ethnobiol. Ethnomed. 3 : 1-11.
- 34. Trotter R T and M H Logan, (1986) Informant Consensus: A new approach for identifying potentially effective medicinal plants, In: Plants in Indigenous Medicine and Diet: Biobehavioural approaches, edited by N L Etkin, (Redgrave Publishers, Bedford Hills, New York), p. 91-112.
- WHO, (2019), WHO global report on traditional and complementary medicine 2019, ISBN 978-92-4-151543-6.