Phenotypic Variability, Heritability and Trait Association of Durum wheat (*T. Turgidum var. durum* L.) Genotypes in Central Ethiopia

Masresha Hailu¹, B. Chandra Sekhar Singh^{2*}, Negash Geleta³ and Gudeta Nepir⁴

 ^{1,2,4}Department of Plant Science, School of Agriculture, Gudar Mamo Mezemir Campus, Ambo University, Ambo, Ethiopia (East Africa)
 ³Debre Zeit Agricultural Research Center (DZARC), Debre Zeit, Ethiopia (East Africa)
 ²*Corresponding author - Email: <u>singhsekhar960@gmail.com</u>

Abstract

The experiment aimed to identify superior durum wheat genotypes for grain yield across various environments and to assess phenotypic variability, heritability, and trait associations within and among populations in central Ethiopia. Analysis of variance (ANOVA) conducted for each site revealed significant differences (P < 0.05) among genotypes for all traits at Debre Zeit and Minjar, except for grain filling period and number of tillers. Combined ANOVA indicated significant differences among tested genotypes for all measured traits, highlighting substantial variability. The location x genotype interaction was significant (P < 0.01) for days to 90% maturity, grain filling period, grain yield, biomass yield, harvest, and grain filling period. Notably, DWNE9 (4054 kg/ha), Fetan (3873 kg/ha), Werer (3784 kg/ha), Denbi (3766 kg/ha), and Mangudo (3723 kg/ha) emerged as top high-yielding genotypes across the two locations. Grain yield exhibited strong positive associations with number of grains/spikes, 1000 kernel weight, hectolitre weight, biomass yield, and harvest index, both at genotypic and phenotypic levels. Conversely, significant negative correlations were observed between grain yield and date of heading, plant height, number of tillers, spike length, number of spikelet/spikes, and grain protein content at both genotypic and phenotypic levels. High estimates of heritability (greater than 70%) coupled with substantial genetic advance as a percent of the mean (greater than 20%) were noted for plant height, spike length, number of grains per spike, grain yield, and harvest index, indicating potential for selecting the top 5% of the base population to significantly enhance mean values. Cluster analysis categorized the 49 durum wheat genotypes into three clusters, with most advanced and released varieties grouped together, exhibiting superior grain yields. The study emphasizes

(1415)

ample phenotypic variations among durum wheat genotypes, highlighting their potential for multi-environment evaluation and genotype-environment interaction studies to assess grain yield stability. Moreover, the populations represent valuable breeding resources for durum wheat improvement initiatives.

Key words : Clusters, Genetic Advance, Genetic Distance, Heritability, Phenotypic Variability.

Wheat, belonging to the grass family Poaceae and the tribe Triticeae, encompasses various species within the genus Triticum, including diploid, tetraploid, and hexaploidy varieties, showcasing the evolutionary significance of polyploidy in wheat. The closely related genus Aegilops has been merged with Triticum, underscoring the intricate genetic relationships within the wheat family⁸. Among the wheat species, Triticum aestivum L. and Triticum durum L. stand out as the most important cereal crops globally, covering vast agricultural lands and contributing significantly to food security. Durum wheat, with its distinct tetraploid genome (2n = 4x = 28, genomes AB), dominates approximately 48% of global wheat cultivation, with key production regions in the Mediterranean basin, North America, and Mexico, alongside emerging importance in other countries such as Australia, Russia, Kazakhstan, India, Ethiopia, and Argentina⁵.

Ethiopia, recognized as a secondary centre of durum wheat, boasts diverse environmental conditions suitable for wheat cultivation, with small-scale farmers predominantly growing durum wheat under rain-fed conditions²⁸. Despite its adaptability, durum wheat faces challenges from both abiotic and biotic factors, resulting in suboptimal productivity. Soil acidity, nutrient fixation, aluminium toxicity, and various diseases like stem rust, yellow rust, and fusarium head blight pose significant threats to durum wheat production^{17,20}.

In the global context, wheat ranks as the most widely cultivated crop, contributing substantially to human nutrition and food security. Africa, including Sub-Saharan Africa (SSA), plays a crucial role in wheat production, with countries like Ethiopia, South Africa, and Sudan among the leading producers¹⁴. Despite its importance, wheat production in Ethiopia falls short of meeting domestic demand, necessitating a deeper understanding of genetic variability and traits associated with yield and disease resistance⁶.

Genetic variability studies are pivotal for crop improvement programs, enabling breeders to identify traits with high heritability and genetic advances for targeted selection. Traits such as grain yield, harvest index, biomass yield, and thousand seed weight exhibit significant genetic variability, offering promising avenues for enhancing productivity³. Heritability estimates, coupled with genetic advances, provide valuable insights into the potential for trait transmission and breeding value. Traits like days to maturity, grain filling period, and plant height demonstrate high heritability, indicating their suitability for selection and improvement through breeding programs¹⁶. Path analysis elucidates the relationships between yield components, guiding indirect selection strategies for promising genotypes. Phenotypic and genotypic correlations between grain yield and related traits, such as harvest index, biomass yield, and thousand seed weight, inform breeding efforts aimed at improving overall productivity². Given the importance of durum wheat in Ethiopia and the need to enhance its productivity, understanding the associations among yield-related traits is crucial. The present study aims to fill these knowledge gaps and provide valuable insights for further crop improvement efforts in durum wheat cultivation in Central Ethiopia.

The trial confined a total of 49 durum wheat genotypes, comprising 17 released varieties, 16 advanced lines, and 16 landraces. It was conducted during the main cropping season of 2020/2021 at two distinct locations: the Debre Zeit Research Centre and the Minjar testing site. These locations were carefully selected to represent the diverse agro-ecologies found in central Ethiopia, ensuring a comprehensive assessment of the genotypes' performance under varying environmental conditions. The experimental design was a 7x7 simple lattice incomplete block design, strategically chosen to optimize space and resource utilization while maintaining experimental integrity. Each genotype was sown at a seed rate of 120 kg/ha, in accordance with recommended fertilizer application practices of 100 kg of NPS and 92 kg of N per hectare¹². These fertilizer rates were selected with the goal of maximizing plant growth and yield potential across the diverse soil and climatic conditions present in the study areas. The locations selected for the trial differed significantly in climate and altitude, influencing the growth and development of the durum wheat genotypes. Monthly temperature fluctuations, including maximum and minimum temperatures (°C), as well as monthly rainfall (mm), were carefully monitored throughout the growing periods to assess their impact on crop performance. For a comprehensive understanding of the test accessions, detailed descriptions are provided in Table-2.

Data collection :

All agronomic, yield and yield-related data were recorded on the middle four rows of each experimental unit. These data along with their details are mentioned below:

Days to heading (DTH, days): The number of days from planting to when 50% of the plants in the plot give heading.

Days to 90% maturity (DTM, days): The number of days from sowing to when 90% of the plants in the plot mature.

Days to grain filling period (GFP, days): The number of days from 50% heading to 90% maturity.

Site	Temper	ature	annual R.F	Altitude	Latitude	Longitude
Bite	Min.	Max.	(mm)	(masl)	Lutitude	Longitude
Debre Zeit	8.9°C	28.3°C	851	1900	08º 44'N	38º 58'E
Minjar	10°C	28°C	867	1810	08º 55'N	39º 45'E

Table-1. Description of the experimental site

(1417)

Table-2.	The l	list of	the	genotypes	tested	at	both	locations

SN	Genotype	Table-2. The list of the genotypes tested at both location Pedigree	Origin	Status
1	DWNL2	C F4 20 S/4/YAZI-1/AKAKI-4//SOMAT-	CIMMYT	ADL
2	Yerer	CHEN/TEZONTLE/3/GUILLEMOT//CANDEAL-II		RV
3	DWNL 39	CORDEIR0/9/GUAYACAN INIA/GUANY/8/GEDIZ		ADL
		FG0//GTA/3/SRN-1/4/TOTUS/5/ENTE/MEXI-2//ïز		
4	DWLRC 25	DWLR	Ethiopia	LR
5	DWNL4	AG 1-22/2*ACO89//2*UC1113/3/5*KOF	CIMMYT	ADL
6	DWLRC 34	2019/20DW/Landrace cluster plot # 34	Ethiopia	LR
7	Ude	CHEN/ALTAR-84//JORI	CIMMYT	RV
8	DWLRC28	DWLR	Ethiopia	LR
9	DWNE9	Mangudo/Mekuye/DZ 2013 meh DW F1 P#20/DZ	Ethiopia	ADL
		2014 meh DW F2	_	
10	Mekuye	STJ3//BICRE/LOUKOS-4/3/TER3	ICARDA	RV
11	DWLRC 39	DWLR	Ethiopia	LR
12	Mangudo	MRF1/STJ2//3/1718/BT//KARIM, TUN	ICARDA	RV
13	DWNE11	CMH83.2578/4/D88059//WARD/YAV79/3/AC089/5/	CIMMYT	ADL
		2*S00TY-		
14	Hitosa	CHEN/ALTAR-84	CIMMYT	RV
15	DWLRC60	2019/20DW/Landrace cluster plot # 60	Ethiopia	LR
16	Tesfaye	ARMENT//SRN-NIGRIS-4/3/CANED-9.1/4/	CIMMYT	RV
		TOSKA-26RASCON-37//SNITSN/5/PLAYERO		
17	DWNL10	MINIMUS/COMB DUCK-2//CHAM-/3/FICHE-	CIMMYT	ADL
18	Denbi	AJAIA/BAUSHEN [3589]	CIMMYT	RV
19	DWNE10	KR0N0S/10/K0FA/9/USDA595/3/D67.3/RABI//	CIMMYT	ADL
		CRA/4/AL0/5/HUI/YAV- 1/6/ARDENT/7/HUI/ïز ¹ ⁄2		
20	DWLRC 48	DWLR	Ethiopia	LR
21	DWNL18	JUPARE C 2001* 2/RBC/5/MOHAWK/3/GUANAY	CIMMYT	ADL
		//TILD-1LDTUS-		
22	Werer	1346/LAHN//BICRE/LOUKOS-4	ICARDA	RV
23	DWLRC 16	DWLR	Ethiopia	LR
24	Utuba	(=Icajihan42) Omruf1/Stojocri2/3/1718/BeadWheat24	ICARDA	RV
		//Karim ¹ / ₂		
25	DWNL9	Mangudo/Mekuye/DZ 2013 meh DW F1 P#20/DZ	Ethiopia	ADL
		2014 meh DW F2 P#19-1		
26	Alemtena	Icasyr-1/3/Gcn//Sti/Mrb3	CIMMYT	RV
27	DWNE8	Mangudo/Bekelcha/DZ 2013 meh DW F1 P#19/DZ	Ethiopia	ADL
		2014 meh DW F2 P#18-6		

(1)	4	1	8)	

28	Fetan	ARMENT//2*SOOTY-9/RASCON-37/4/CNDO/	CIMMYT	RV
20	retaii	PRIMADUR//HAI-OU-17/3/SNITAN		ΚV
29	DWLRC20	DWLR	Ethiopia	LR
			<u>^</u>	
30	DWNL11	CMH83.2578/4/D88059//WARD/YAV79/3/AC089/5/	CIMMYT	ADL
1	D 10	2*S00TY-9/RASC0N-37/6/1A.1D5+1-06/�	T . 1	DI
31	D-18	CGS	Italy	RV
32		DWLR	Ethiopia	LR
33	Gerardo	VZ 466/61-130xGII''s", CM9605	Ethiopia	RV
34	DWNE13	otb4/3/HFN94N-8/Mrb5//Zna-1/4/5+j3//Dra2/Bcr/	ICARDA	ADL
		3/Ter-3		
35	Cocorit	RAE/4*TC60//STW63/3/	Mexico	RV
36	DWLRC96	DWLR	Ethiopia	LR
37	Bekelcha	980SNGedirfa/Gwerou #15 patho	CIMMYT	RV
38	DWNE7	Yere/Mova/DZ2013mehF1 P#9/DZ 2014mehF2P#9-2	Ethiopia	ADL
39	Toltu	4/B/R9096#21001(980SN Patho)	CIMMYT	RV
40	DWLRC92	DWLR	Ethiopia	LR
41	DWLRC79	DWLR	Ethiopia	LR
42	DWNE8	Mangudo/Bekelcha/DZ 2013 meh DW F1 P#19/DZ	Ethiopia	ADL
		2014 meh DW F2 P#18-6	ŕ	
43	DWLRC84	DWLR	Ethiopia	LR
44	DWLRC85	DWLR	Ethiopia	LR
45	DWNL12	CMH83.2578/4/D88059//WARD/YAV 79/3/ACO89/	CIMMYT	ADL
		5/2*SOOTY.9/RASCON-37/6/1A.1D 5+1-6/�		
46	DWLRC 88	DWLR	Ethiopia	LR
47	DWLRC89	DWLR	Ethiopia	LR
48	DWNL19	YAVA 79/9/ USDA 595/3/D67.3/RABI//CRA/4/ALO	CIMMYT	ADL
		/5/HUI/YAV-1/6/ARDENTE /7/HUI/YAV 79/8/T1/2		
49	Filakit	EN-25	CIMMYT	RV

Where, ADL- is advanced line, LR- is landrace, and RV- is released variety.

Plant height (PHT) (cm): It was measured from the soil surface to the tip of a spike (awns excluded) for 10 randomly selected plants from the net plot area at physiological maturity and finally averaged over 10 plants.

Number of tillers per plant (NTP, No): The average number of tillers per plant was counted for 10 randomly selected plants

from the net plot area.

Number of spikelets per spike (NSP, No): The average number of spikelets per spike was counted for 10 randomly selected plants in the net plot area.

Spike Length (SPL, cm): It was measured from the base to the tip of the spike excluding the awns for the averaged 10

randomly selected plants from the net plot area.

Number of grains per spike (NGS, No): The number of grains of the main tillers of each of the ten randomly taken plants for each experimental unit was recorded and the averages of the ten plants were used for analysis.

Thousand kernel weight (TKW, g): the weight of one thousand grains for each experimental unit.

Hectoliter weight (HLW, kg/h L): The grain weight of a one-liter volume (random sample) was estimated for each experimental unit by standard procedure (AACC, 2000) and the result was converted to g/hL.

Grain yield (GY, kg/ha): Grain yield was measured from net plot area (g/plot) and converted to kg/ha.

Biomass yield (BY, kg/ha): The weight of total above-ground biomass yield in kg/ plot and finally converted to kg/ha.

Harvest index (HI, %): It was computed as the ratio of grain yield to total biological yield and multiplied by 100.

Grain protein content (GP, %): The grain protein content of the harvested varieties was determined via near-infrared reflectance (NIR) spectroscopy.

Statistical Analysis

All measured parameters were subjected to analysis of variance (ANOVA) using R software. The homogeneity of error mean squares between the two locations were tested by the F test on variance ratio and combined analyses of variance are performed for the traits whose error mean squares are homogenous using R Software (R3.5.2, 2018). Mean separation was carried out using Duncan's Multiple Range Test (DMRT) at 5% probability levels.

General linear model for single location:

$$Yijl=\mu + G_i + R_j + B_k(R_j) + E_{ijl}$$

Where μ = General mean, G_i= genotype i effect, R_j= replication j effect, B_k(R_j) = Block l with in replication j effect, E_{ijk}= random error associated to genotype i, replication j and block k.

General linear model of over location (combined):

 $Yijlk=\mu + G_i + B_j + L_k + G_iL_k + B_j(R_m) + E_{ijkm}$

Where μ = General mean, Gi= effect of treatment i, Bj= effect of block j, Lm = effect location m, G_i x L_m = interaction effect of genotype i in location m, B_j(R_m)= effect of block j in replication m; E_{iikm} = error variance.

Source of variation	DF	SS	MS
Replication (adj.)	(r-1)	SSR	
Treatments	(t-1)	SSt	
Blocks(adj.)	r(q-1)	SSB	Eb
Intra block error	(q-1) (rq-q-1)	SSE	Ee
Total	rq-1	Total SS	

Table-3. Analysis of variance for simple lattice design

DF= degree of freedom, MS = Mean square, q= Number of plots in a block, r = Number of replications, SS = Sum of square, t= Number of treatments.

Computation of Variance Components :

 The genotypic coefficient of variation and genetic advance were calculated using as follows equations: Genotypic variances (GV) = (MSG/rl-MSE)

Where, GV is genetic variance; MSG-Mean square for genotypes; MSE-Mean square for error; r- is replication; and l-is location

- 2. Phenotypic variance (PV) = GV + MSE
- 3. Genotypic coefficient of variation (GCV) = $(\sqrt{GV} / X) 100$

Where, GV is as defined in above; X is the mean of the population.

- 4. Phenotype coefficient variation (PCV) = $(\sqrt{PV/X})$ 100
- 5. Broad sense heritability $(H^2) = GV/PV$ was calculated according to Allard.⁴.
- 6. Genetic advance (GA) = $KH^2\sqrt{PV}$ Where the selection intensity which is 2.06 at 5 % selection intensity;
- 7. Genetic advance as percent of the mean (GAM) = (GA/X) 100

Computation of Correlation Coefficients :

Phenotypic and genotypic correlation coefficients were tested using the standard procedure suggested by Miller *et al.*,¹⁸ from corresponding variance and covariance components as:

Phenotypic correlation coefficient

$$(\mathrm{rp}_{\mathrm{xy}}) = \frac{\sigma_{p_{\mathrm{xy}}}}{\left(\sqrt{\sigma^2 p_{\mathrm{x}} * \sigma^2 p_{\mathrm{y}}}\right)}$$

Genotypic correlation coefficient

$$(\mathbf{r}\mathbf{g}_{xy}) = \frac{\sigma_{g_{xy}}}{\left(\sqrt{\sigma^2 g_x * \sigma^2 g_y}\right)}$$

Where, $\mathbf{r}_{p_{xy=}}$ phenotypic correlation coefficient between character x and y.

 rg_{xy} = genotypic correlation coefficients between character x and y. Significance of phenotypic correlation coefficients were tested using the formula given by Sharma²⁵.

Genotypic correlation coefficient was tested with the follows formula as suggested by Robertson,²³.

$$t = \frac{rg_{xy}}{SErg_{xy}}$$

Where, SErg_{xy} = $\sqrt{\frac{1 - r^2_{g_{xy}}}{2h^2_{x} * h^2_{y}}}$

SErg_{xy}=Standard error of genotypic correlation coefficient between character X and Y; $h^2x =$ heritability for character X; $h^2y =$ heritability for character y.

The calculated absolute t values were tested against the tabulated t- value at g-2 degree of freedom for both phenotypic and genotypic correlations.

Genetic Distance Analysis :

The genetic distance of 49 durum wheat germplasm was estimated using Euclidean distance (ED) calculated from quantitative traits after standardization (subtracting the mean value and dividing it by the standard deviation) as established by Sneath and Sokal.²⁷ as follow:

$$EDik = \sqrt{\sum_{i=1}^{n} (Xij - Xik)^2}$$

Where, EDjk = distance between genotypes j and k; xij and xik = phenotype traits values of the ith character for genotypes j and k, respectively; and n = number of phenotype traits used to calculate the distance. The distance matrix from phenotype traits was used to construct a dendrogram based on the unweight Pair-group Method with Arithmetic Means (UPGMA). The results of cluster analysis were presented in the form of a dendrogram. In addition, mean ED was calculated for each genotype by averaging a particular genotype to the other 49 germplasm. The calculated average distance (ED) was used to estimate which germplasm(s) (genotype) is closest or distant to others.

Analysis of Variance : Single Location's Analysis of Variance :

The results of the analysis of variance conducted for each location across 14 traits are presented in Appendix Table-1. At both the Debre Zeit and Minjar locations, significant differences (P<0.01) were observed among the genotypes for all traits considered. Additionally, significance was noted for NSP (P<0.05) at the Minjar location, while differences for GFP and NTP at Minjar were nonsignificant (P>0.05). These significant variations among genotypes across locations underscore the abundant diversity present, which holds promise for durum wheat breeding. This aligns with findings from previous studies, where significant differences in agronomic traits among different durum wheat populations were reported by Dejene et al.,¹¹; Alemu et $al.,^{3}$.

Combined Analysis of Variance :

The combined analysis of variance revealed highly significant differences (P<0.01) among genotypes due to location effects for DTM, GFP, PHT, NTP, NSP, SPL, NGS, TKW, and GPC. Days to 50% heading, harvest index, and hectoliter weight also exhibited significant differences (P<0.05). However, for grain yield and biomass yield, no significant differences among genotypes were observed due to location effects (Table- 4). Among all traits, differences among genotypes were highly significant (P<0.01) except for GFP, which showed significance at (P < 0.05). Notably, the interaction between location and genotype was highly significant (P<0.01) for DTM, GFP, GY, BY, HI, and GPC, and significant (P<0.05) for PHT among genotypes. This suggests varying performance of genotypes across the two locations. These findings in line with previous research indicating wide genetic variability among durum wheat genotypes for the traits considered in this study¹¹.

Mean and Range Values for Different Traits:

Table-5 and Appendix tables 1, 2, and 3 present the combined mean and range values for 13 traits across 49 durum wheat genotypes. Days to 50% heading ranged from 57.5 days (Filakit and DWNL10) to 71 days (DWLRC89), with an average of 63 days. Approximately 39% of the genotypes exhibited late heading, indicating potential for breeding programs targeting heading traits. Longer heading duration allows sufficient floral development, crucial for high grain yield⁷. Days to 90% maturity ranged from 85.5 days (DWNL10) to 105 days (Werer), with an average of 95 days. Around 38% of the genotypes displayed

				tested at D	tested at Debre Zeit and Minjar	injar)			
		Environ-	Rep	Block	Geno-	Genotype x				
\mathbf{v}	Traits	ment	(environ-	(rep),	type	Environ-	Error	CV(%)	Mean	MSD
Z		(df=1)	ment), Df=2	df=12	(df=48)	ment (df=48)	(df=84)			
	DTH	36.00*	$0.16^{\rm ns}$	40.20**	48.87**	3.14^{ns}	3.75	3.09	62.71	5.67
2	DTM	2317.73**	10.05^{ns}	85.97**	80.36**	27.23**	10.37	3.22	94.53	9.42
3	GFP	1776.02^{**}	11.19 ^{ns}	40.52*	18.64^{*}	31.63**	11.42	10.62	31.82	9.89
4	PHT(cm)	1554.61**	52.66*	260.58**	506.91**	27.60*	16.22	4.76	84.62	11.79
5	NTP	83.59**	2.61*	0.97*	1.30^{**}	0.73 ^{ns}	0.51	19.51	3.65	2.09
9	dSN	149.19**	39.76**	5.81*	5.36**	1.29 ^{ns}	1.67	7.52	17.21	3.79
٢	SPL (cm)	1.98^{**}	5.12**	2.60**	5.39**	0.23^{ns}	0.28	8.71	6.11	1.56
8	NGS	569.16**	22.37^{ns}	541.59**	300.07**	26.93 ^{ns}	24.81	11.52	43.26	14.58
6	BY (kg/ha)	475971.90^{ns}	672986.40 ^{ns}	2966483.20**	2758708.6**	865275.20**	270407.90	6.07	8566.36	1522.10
10	GY (kg/ha)	153496.05 ^{ns}	98372.58 ^{ns}	1338167.56**	1282351.33**	292690.06**	73849.17	9.01	3014.80	795.46
11	HI (%)	51.94*	2.05 ^{ns}	65.35**	79.92**	18.72**	9.34	8.76	34.91	8.95
12	HLW (kg/hl)	17.88*	0.18^{ns}	43.37**	45.55**	3.21^{ns}	4.43	2.76	76.12	6.16
13	TKW (g)	293.88**	32.37*	67.00**	76.29**	10.21^{ns}	10.29	9.48	33.82	9.39
14	GPC (%)	3.34**	1.98^{**}	1.54**	1.23**	0.91**	0.31	4.50	12.41	1.64
Where, of varia yield; J NSP= N weight.	Where, ** = highly sign of variance, DTH=Days yield; H1=Harvest ind NSP= Number of spikel weight.	significant (P ays to 50% he index; HLW ikelet per spi	 <0.01); * = sig ading; DTM= = Hectoliter ke; NTP=Nun 	mificant (P<0.05 = Days to 90% ma weight, MSD = nber of tillers pe	Where, ** = highly significant (P<0.01); * = significant (P<0.05); and ns= non-significant (P>0.05), BY = Biomass yield, CV = Coefficient of variance, DTH=Days to 50% heading; DTM= Days to 90% maturity; GFP= Grain filling period; GPC= Grain protein content, GY=Grain yield; H1=Harvest index; HLW= Hectoliter weight, MSD =Minimum standard difference, NGS= Number of grains per spike; NSP= Number of spikelet per spike; NTP=Number of tillers per plant; PHT= Plant height; SPL= Spike length; TKW= Thousand kernel weight.	ignificant (P>0 ain filling perio ndard differenc lant height; SPI	.05), BY= Bid d; GPC= Grai ce, NGS= Ni C= Spike leng	omass yie n protein umber of gth; TKW	ld, CV= C content, G f grains p '= Thousa	oefficient iY=Grain er spike; nd kernel

Table-4. Combined ANOVA (Mean squares) for 14 traits of durum wheat genotypes

late maturity compared to the overall mean. Grain filling period ranged from 24.80 (DWLRC92) to 37.80 days (DWLRC92), averaging 32 days. Plant height ranged from 69.80 cm (DWNL19) to 111.50 cm (DWNL16), with an average of 84.60 cm. About 39% of the population exhibited taller plant height than the overall mean, particularly among landrace genotypes known for their longer stature and susceptibility to lodging²¹.

Spike length, tillers per plant, spikelets per spike, and grains per spike displayed ranges from 4.5 cm (DWNE13) to 9.10 cm (DWLR85), 2.80 (DWNE10) to 5.50 (DWLRC94), 15.0 (DWNE13) to 20 (DWLRC16), and 24.0 (DWLRC89) to 63.0 (DWNL18), respectively. Notably, spikelet per spike and grains per spike exhibited wider ranges than spike length and tiller number per plant. Thousand kernel weight ranged from 25.0 g (DWLRC79 and DWLRC88) to 42.0 g (Utuba), with an average of 34 g. Around 47% of the genotypes shown higher seed size than the overall mean, indicating potential for selecting genotypes with larger seed sizes, though influenced by environmental factors. Hectoliter weight ranged from 64.0 kg/hl (DWLRC88) to 80.40 kg/hl (Fetan), averaging 76.0 kg/hl. Approximately 59% of the genotypes exhibited higher values than the general mean, with values above 68 kg/hl considered acceptable for breeding purposes¹⁹.

Biomass yield ranged from 4968.6 kg/ ha (DWLRC88) to 9389.50 kg/ha (Gerardo), with an average of 8566 kg/ha. About 69% of the population exhibited higher values than the general mean. Harvest index ranged from 28.0% (DWLRC88 and DWLRC28) to 43.60% (DWNE9), with a mean of 35.0%. Approximately 51% of the genotypes displayed values higher than the population mean. Grain filling period ranged from 11.40% (DWNE9) to 14.10% (DWLRC20), with a mean of 12.40% around 43% of the genotypes exhibited values higher than the population mean. The results indicate significant differences in phenological, yield, and yield-related traits among durum wheat genotypes²². Grain yield ranged from 1392.0 kg/ha (DWLRC88) to 4053.80 kg/ha (DWNE9), averaging 3014.82 kg/ha approximately 57% of the genotypes exhibited higher mean values than the general mean, indicating potential for breeding programs. Across locations, a yield difference of 2986 kg/ha at Debre Zeit and 1432.5 kg/ha at Minjar was observed between the highest and lowest yielding genotypes. However, overall means were similar across locations, suggesting consistent performance of genotypes. High vielding genotypes included DWNL39 (3701 kg/ha), Mangudo (3723 kg/ha), Denbi (3766 kg/ha), Werer (3784 kg/ha), Fetan (3873 kg/ ha), and DWNE9 (4054 kg/ha), primarily released varieties. These genotypes align with the acceptable potential grain yield threshold of above 3.0 tons per hectare¹⁹.

Genotypic and Phenotypic Coefficients of Variation :

The genotypic and phenotypic coefficients of variation (GCV and PCV) serve as crucial indicators of variability within a population⁹. In our study, GCV ranged from 3.86% for grain protein content to 19.18% for the number of grains per spike, while PCV ranged from 5.04% for hectoliter weight to 23.04% for the number of tillers per plant (Table- 7). Based on established criteria, PCV values were categorized as high (>20%) for traits like the number of tillers per plant and

	GPC	(%)	13.0c-h	12.8c-i	11.4p	12.2h-o	13.1b-f	12.0j-p	12.3fo	12.1i-p	12.2h-o	12.5d-n	12.5d-n	12.2k-p	12.3g-o	12.0j-p	12.0j-p	12.8c-i	11.7op	12.0j-p	12.6d-m	13.0b-g	12.7d-I	11.6op	12.0k-p	12.0j-p	11.9l-p	11.9l-p
	IH	(g)	41.2a-e	34.7j-o	40.3a-f	31.9n-s	35.8g-n	29.5qrs	38.8b-j	28.0s	43.6a	36.8e-m	28.6s	41.8abc	37.2d-m	38.3b-k	29.2rs	35.8g-n	34.9h-o	40.7a-f	33.7m-q	31.00-s	34.0k-p	42.0ab	28.4s	39.7a-g	33.91-p	37.7c-m
	BY	(kg/ha)	8822.5a-f	8810.0a-f	9224.7abc	8847.3a-e	8153.6e-i	9056.0abc	8522.3d-i	8239.9d-i	9302.3a	8719.0a-g	8224.1d-i	8917.0a-d	9289.7ab	9216.0abc	8165.0e-i	8894.9a-d	8565.5b-g	9241.8abc	8928.3a-d	9038.1abc	8924.8a-d	9017.5abc	7999.6ghi	9170.2abc	9360.0a	9240.1abc
son	HLW	(kg/hl)	78.8a-d	79.2abc	80.0ab	73.5g-k	78.2a-d	72.9ijk	78.1a-d	73.9g-j	77.9а-е	77.0b-f	69.2lm	80.0ab	78.5a-d	80.2a	74.0f-j	74.9e-i	76.3c-g	79.9ab	78.2a-d	72. 7ijk	76.1d-h	79.5ab	72.5ijk	80.2a	78.8a-d	79.2abc
ping sea	TKW	(g)	34g-l	39a-e	38b-g	30l-o	33i-n	33h-m	41 abc	34g-l	41 abc	40a-d	29m-p	41 abc	37c-i	33h-m	31k-o	27opq	34f-1	31k-0	32k-n	33h-m	27opq	41ab	32j-n	42a	38a-f	35e-k
iain crop	NGS		57a-d	51c-g	44h-k	33m-q	54b-e	32m-q	51c-f	31m-r	61ab	36lmn	29n-s	52c-f	59ab	51c-h	35l-p	57abc	41i-l	54b-e	50d-h	36l-o	63a	46f-j	38klm	48e-j	49e-h	49e-h
tested at Debre Zeit and Minjar in 2020/21 main cropping season	NSP		18b-g	18b-g	16ghi	18b-f	19a-d	18b-g	17e-i	19abc	17c-h	15i	19a-d	18b-g	18b-g	18b-g	19ab	16ghi	15i	18b-f	15i	18b-g	19a-e	17e-i	20a	17e-i	17f-i	17e-i
njar in 2	SPL	(cm)	5.0n-r	7.1 def	5.0l-r	5.8h-k	6.4f-i	6.6fg	5.6j-p	8.7ab	5.7i-n	4.90-r	8.5ab	5.3j-r	5.4j-q	5.5j-p	8.6ab	5.0m-r	5.0l-r	5.8h-l	4.7qr	7.7cd	5.7i-n	5.4j-q	7.6cde	5.0n-r	5.6j-p	5.3j-q
t and Mi	ATN		$3.0^{\rm fg}$	3.3efg	3.5d-g	4.8ab	3.5d-g	4.0b-e	3.0fg	4.0b-e	4.0b-e	3.3efg	3.5d-g	3.3efg	3.0fg	3.5d-g	4.3bcd	3.3efg	3.3efg	3.5d-g	2.8g	4.5bc	3.8c-f	3.5d-g	4.0b-e	3.3efg	3.0fg	3.5d-g
Jebre Zei	PHT	(cm)	78i-m	72nop	71op	102b-e	78.8i-l	99.3def	79.8i-l	105.8b	82.5ij	77j-n	100c-f	79.5i-l	71.8nop	78.5i-l	101.3b-f	17j-n	72.8m-p	78.5i-l	70.8op	105.5bc	76k-o	78i-m	111.5a	83.5i	80.8ijk	74.8l-p
ested at I	GFP		30.8d-k	33.8a-g	30.8d-k	30.3e-k	29.8f-k	30.5d-k	30.8d-k	31.0d-k	34.3a-f	32.0c-k	29.5f-l	33.5a-h	32.5b-j	32.8b-i	30.3e-k	31.5c-k	27.8jkl	31.5c-k	33.5a-h	28.3ijkl	31.5c-k	36.3abc	30.5d-k	30.5d-k	34.3a-f	32.5b-j
t	DTM		99bcde	103ab	91.5i-o	93.5f-l	90.5k-p	93.5f-l	89.31-q	96e-i	97.8c-g	91.3j-p	90.5k-p	92.8h-m	93h-l	91.5i-o	97d-h	91.8i-n	85.3q	90.8k-p	95.8-j	86.8pq	95e-k	104.5a	100.8a-d	92.8h-m	97d-h	91.8i-n
	DTH		68.3 ^{abc}	69.3 ^{ab}	60.8^{g-1}	63.3 ^{e-h}	60.8^{g-1}	63.0^{f_i}	58.5 ^{lm}	65.0 ^{def}	63.5 ^{efg}	59.3 ^{lm}	61.0g-1	59.3lm	60.5h-l	58.8lm	66.8bcd	60.3i-m	57.5m	59.3lm	62.3f-k	58.5lm	63.5efg	68.3abc	70.3a	62.3f-k	62.8f-j	59.3lm
	SN Genotypes		DWNL2	Yerer	DWNL39	DWLRC25	DWNL4	DWLRC34	Ude	DWLRC28 65.0 ^d	DWNE9	Mekuye	DWLRC39	Mangudo	DWNE11	Hitosa	DWLRC 60 66.81	Tesfaye	DWNL10	Denbi	DWNE10	DWLRC48	DWNL18	Werer	DWLRC6	Utuba	DWNL9	Alemtena
	SN		1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

Table-5. Combined mean for the phonological and yield related traits in 49 durum wheat genotypes

(1424)

27	DWNE8	59.0lm	88.3m-q	29.3g-1	78.3i-m	3.0fg	5.6j-0	17f-i	52c-f	38a-f	78.2a-d	9347.1a	37.6c-m	11.9l-p
28	Fetan	62.8f-j	91.5i-o	28.8h-l	78.3i-m	2.8g	5.5j-q	17f-i	48e-j	32k-n	80.4a	9118.0abc	42.5ab	11.8nop
29	DWLRC20 62.3f-1	62.3f-k	87opq	24.8lp-s	99.8def	4.0b-e	8.1bc	18b-f	290-s	26pq	73.3g-k	7241.9jk	30.1m-q	14.1a
30	DWNL11	59.3lm	91.8i-n	32.5b-j	78i-m	3.5d-g	5.4j-q	16ghi	42i-l	41abc	78.3a-d	8931.5a-d	39.1b-i	12.4e-o
31	D-18	61.0g-l	92.8h-m	31.8c-k	70p	3.3efg	6.5fgh	17c-h	49e-h	37b-h	79.0a-d	9032.1abc	39.6a-g	12.0j-p
32	DWLRC94	64.8def	h-b7e-h	32.3c-j	96fgh	5.5a	7.6cde	18b-f	28p-s	27opq	70.6kl	7171.9jk	28.4s	14.1a
33	Gerardo	69.0ab	104a	35.0a-e	80.5 ijk	3.3efg	7.1def	18b-f	44h-k	41ab	77.8a-e	9389.5a	33.3m-r	12.3f-o
34	DWNE13	63.5efg	100.8a-d	37.3ab	77.3j-n	3.3efg	4.5r	15i	50d-h	35e-k	78.5a-d	8729.3a-f	39.6a-g	12.3f-o
35	Cocorit	63.3e-h	94f-k	30.8d-k	78.3i-m	4.5bc	5.6j-o	18b-g	46f-j	37b-h	77.1b-e	9120.3abc	37.3d-m	12.1i-p
36	DWLRC96	70.8a	102.3abd	31.5c-k	90.5h	4.8ab	6.9ef	18b-g	30n-s	34f-l	73.3g-k	7723.4ij	28.8s	11.6op
37	Bekelcha	59.5klm	93h-l	33.5a-h	78i-m	3.8cdef	5.8h-m	17f-i	44g-k	39a-e	78.7a-d	9256.6ab	38.1b-l	13.2bcd
38	DWNE7	62.8f-j	98cdef	35.3a-d	97.5ef	3.5defg	4.9pqr	15i	41jkl	36d-j	78.2a-d	8780.8a-f	31.9n-s	11.8nop
39	Toltu	59.8khm	93.3g-l	33.5a-gh	72.8m-p	3.3efg	5.5j-p	17e-i	50d-h	30l-o	79.0a-d	9087.6abc	39.2b-h	12.2g-o
40	DWLRC92 66.0cde	66.0cde	103.8a	37.8a	100.3b-f	4.5bc	5.2k-r	16ghi	27qrs	311-0	72.3ijk	7761.6ij	29.3rs	13.5abc
41	DWLRC79	70.8a	102.3abd	: 31.5c-k	91.3gh	3.5d-g	8.5ab	18b-g	25rs	25q	66.8mn	5429.61	28.5s	12.5d-n
42	DWNL8	60.8g-l	94.8e-k	34.0a-g	80.5ijk	3.5d-g	5.3j-q	17e-i	50d-h	37b-h	79.3abc	8871.7a-e	41.4a-d	11.9m-p
43	DWLRC84 60.0j-m	60.0j-m	87.3n-q	27.3kl	96.8efg	4.5bc	7.1def	17c-h	30n-s	30l-o	71.5jkl	7809.1hij	31.40-s	12.8c-j
44	DWLRC85	64.8def	96.8d-h	32.0c-k	102b-e	4.5bc	9.1a	19ab	32m-r	33h-m	73.1h-k	9345.1a	29.2rs	12.7c-k
45	DWNL12	60.5h-l	93.3g-l	32.8b-i	72nop	2.8g	5.4j-q	16ghi	48e-i	30l-o	76.3c-q	8105.3f-i	34.7i-o	12.7d-l
46	DWLRC88 62.8f-j	62.8f-j	92.5h-m	29.8f-k	103.8bcd	4.0b-e	6.7fg	19abc	351-0	25pq	64.0n	4968.61	28.0s	13.8ab
47	DWLRC89	71.0a	104a	33.0a-hi	90.5h	4.5bc	6.0g-j	16hi	24s	29n-q	73.5g-k	6923.3k	28.3s	12.8c-j
48	DWNL19	59.8klm	91k-p	31.3d-k	69.8p	3.5d-g	4.90-r	16ghi	50c-h	29m-p	74.0f-j	9000.0abc	30.8o-s	13.1b-e
49	Filakit	57.5m	91k-p	33.5a-h	78.8ijkl	3.5defg	6.0g-j	17d-i	44h-k	37b-h	78.6a-d	8717.6a-g	36.5f-m	12.2h-o
Mean	an	62.7	94.6	31.8	84.6	3.7	6.1	17.2	43.3	33.8	76.1	8566.3	34.9	12.4
CV (%)	(%)	3.2	3.2	11.0	4.7	17.9	8.9	7.6	11.5	9.3	2.8	6.0	8.8	4.5
MSD	D	5.67	9.42	9.89	11.79	2.09	1.56	3.79	14.58	9.31	6.16	1522.10	8.95	1.46
Whe	Where, Numbers follow	s followed	d by same	letter in t	he colum	n are not	signific	antly diff	erent; B'	Y= Bion	ass yield	ed by same letter in the column are not significantly different; BY= Biomass yield, CV= Coefficient of	ficient of	
variŝ	variation, DTH=Days to	Days to 5	0% headi	ng; DTM	= Days to	90% ma	turity; G	FP= Gra	in filling	period; (GPC= Gr	50% heading; DTM= Days to 90% maturity; GFP= Grain filling period; GPC= Grain protein content,	content,	
_Υ=	GY=Grain yield; HI=Harvest index; HLW= Hectoliter weight, MSD= Minimum standard difference, NGS= Number of grains per spike;	HI=Harv	vest index	; HLW=F	Hectoliter	weight, l	MSD=N	finimum	standard	differen	ce, NGS ⁼	= Number of	grains pe	r spike;
VSP	NSP= Number of spikel	t spikelet	per spike	N=dIN;	umber of i	tillers pe	r plant; ŀ	3I'I = I'H'	int heigh	t; SPL=	Spike len	et per spike; NTP=Number of tillers per plant; PHI = Plant height; SPL= Spike length; TK W= Thousand kernel	Thousan	d kernel
weight.	jnt.													

(1425)

(1426)

SN	Genotypes	Debre Zeit	Minjar	Mean
1	DWNL2	3532.5e-h	3740.0a-g	3636.25bcd
2	Yerer	2970.0i-l	3125.0h-m	3047.5g-n
3	DWNL39	3977.5a-d	3425.0c-i	3701.25abc
4	DWLRC25	2530.0m-q	3125.0h-m	2827.5j-o
5	DWNL4	2625.0k-q	3265.0g-l	2926.25i-n
6	DWLRC34	2607.0k-q	2735.0ј-р	2671.25n-r
7	Ude	3585.0c-g	3017.5i-n	3301.25d-i
8	DWLRC28	2417.50-s	2187.5p-s	2302.5r-u
9	DWNE9	4002.5abc	4105.0a	4053.75 a
10	Mekuye	3002.5ijk	3417.5d-i	3210e-j
11	DWLRC39	2207.5qrs	2497.5n-s	2352.5q-u
12	Mangudo	3892.5а-е	3552.5a-i	3722.5abc
13	DWNE11	3695.0 a-e	3182.5g-l	3438.75c-g
14	Hitosa	4035.0ab	3047.5i-n	3541.25b-e
15	DWLRC 60	2135.0rs	2657.5l-r	2396.25p-t
16	Tesfaye	2967.5i-l	3380.0d-i	3173.75e-l
17	DWNL10	2690.0k-p	3280.0e-j	2985i-n
18	Denbi	3522.5e-h	4010.0abc	3766.25abc
19	DWNE10	2990.0ijk	3015.0i-n	3002.5i-n
20	DWLRC48	2982.5i-l	2565.0m-r	2773.75m-p
21	DWNL18	2932.5i-m	3127.5h-m	3030 h-n
22	Werer	3715.0а-е	3852.5а-е	3783.75abc
23	DWLRC6	2367.5p-s	2172.5p-s	2270stu
24	Utuba	4082.5a	3212.5g-l	3647.5bcd
25	DWNL9	3125.0hij	3225.0g-l	3175e-l
26	Alemtena	3252.5f-i	3645.0a-h	3448.75c-f
27	DWNE8	3155.0g-j	3847.5a-f	3501.25b-e
28	Fetan	3637.5b-f	4107.5a	3872.5ab
29	DWLRC20	2237qrs	2110.0qrs	2173.75stu
30	DWNL11	3880.0а-е	3120.0h-m	3500 b-e
31	D-18	3562.5d-g	3552.5a-i	3557.5b-е
32	DWLRC94	1990.0st	2085.0rst	2037.5tu
33	Gerardo	2982.5i-l	3215.0g-l	3098.75f-m

Table-6. Combined mean performance for the grain yield (kg/ha) of the 49 durum wheat genotypes tested at Debre Zeit and Minjar during 2020/21 main cropping season

(1)	427)
	. ,

2.1		2020 5	4020.0.1	2475 6
34	DWNE13	2930.5i-m	4020.0ab	3475c-f
35	Cocorit	2932.5i-m	3880.0a-d	3406.25c-h
36	DWLRC96	2462.5n-r	1970.0stu	2216.25stu
37	Bekelcha	3922.5а-е	3150.0h-m	3536.25b-е
38	DWNE7	2895.0i-n	2680.0k-q	2787.5l-p
39	Toltu	3862.0а-е	3265.0f-k	3563.75b-е
40	DWLRC92	2432.50-r	2112.5qrs	2272.5 stu
41	DWLRC79	1590.0tu	1510.0tu	1550v
42	DWNL8	3812.5а-е	3512.5b-i	3662.5a-d
43	DWLRC84	2132.5rs	2775.0ј-о	2453.75o-s
44	DWLRC85	2807.5i-o	2647.51-r	2727.5m-q
45	DWNL12	2172.5rs	3460.0b-i	2816.25k-o
46	DWLRC88	1332.5u	1432.5u	1392.5v
47	DWLRC89	1535.0u	2410.0o-s	1972.5u
48	DWNL19	2550.0l-r	2995.0i-o	2772.5m-p
49	Filakit	3677.5a-f	2712.5j-q	3195e-k
	Mean	2986	3043	3014.82
	CV (%)	7.2	9.5	9.276
	MSD			795.46

Where: - Numbers followed by same letter in the column are not significantly different; CV= coefficient of variation, MSD= Minimum standard difference.

spike length, and medium (10-20%) for others such as grain filling period and biomass yield. Conversely, GCV values were medium for traits like plant height and grain yield, and low for traits such as days to 50% heading and grain protein content. High PCV and GCV values suggest that selection based on these traits could yield significant improvements, as they indicate substantial genotypic variability²⁶.

Estimates of Heritability and Genetic Advance :

Heritability estimates, ranging from 14% for grain-filling period to 88% for plant

height, indicate the degree to which phenotypic variation is attributable to genetic factors (Table-7). Notably, traits like grain yield, plant height, and spike length exhibited very high heritability, suggesting strong genetic control over these traits and the potential for effective selection based on phenotypic performance. Genetic advance, expressed as a percentage of the mean, was high for grain yield, harvest index, plant height, spike length, and number of grains per spike. This suggests that selecting the top 5% of the population could result in significant advances beyond the population mean. Medium genetic advances were observed for traits like biomass yield and 1000

_
car
mean
ne
f tl
t o
en
erc
as pe
e as pe
JCe
vai
ad
<u>ic</u>
let
ei.
p
ty an
ity
bilid
ital
er
s, h
ces
an
ari
ic varian
eti
eñ
nd g
anc
S
lue
ge values an
ge
ang
ı, ra
ean
Щ
7.
ole
Table
<u> </u>

			of 14 traits in 49 durum wheat genotypes	49 durum w	heat genoty	pes					
SN	Traits	Mean	Range	$\delta^2 g$	$\delta^2 e$	$\delta^2 P$	GCV	PCV	H ² (%) GA		GAM
1	Days to 50% heading	62.71	57.50-71.0	11.28	3.75	15.03	5.36	6.18	75.0	6.00	9.57
7	Days to 90 % maturity	94.53	85.3 - 104.5	17.50	10.37	27.87	4.43	5.58	63.0	6.84	7.23
ε	Grain filling period	31.82	24.8-37.8	1.81	11.42	13.23	4.22	11.43	14.0	1.02	3.22
4	Plant height (cm)	84.62	69.80-111.50	122.67	16.22	138.89	13.09	13.93	88.0	21.47	25.38
5	Number of tillers plant ⁻¹	3.65	2.80-5.50	0.20	0.51	0.71	12.18	23.04	28.0	0.48	13.27
9	Number of spikelets	17.21	15.0-20.0	0.92	1.67	2.59	5.58	9.36	36.0	1.18	6.87
	per spike										
7	Spike length (cm)	6.11	4.50-9.10	1.28	0.28	1.56	18.50	20.43	82.0	2.11	34.56
8	Number of grains per	43.26	24.0-63.0	68.82	24.81	93.63	19.18	22.37	74.0	14.67	33.92
	spike										
6	Biomass yield (kg/ha)	8566.36	4968.6-9389.50	622075.18	270407.90	892483.08	9.21	11.03	70.0	1358.45	15.86
10	Grain yield (kg/ha)	3014.80	1392.5 - 4053.8	302125.54	73849.17	375974.71	18.23	20.34	80.0	1016.50 33.72	33.72
11	Harvest index (%)	34.91	28.0-43.60	17.65	9.34	26.99	12.03	14.88	65.0	7.01	20.07
12	Hectolitre weight (kg/hl)	76.12	64.0-80.40	10.28	4.43	14.71	4.21	5.04	70.0	5.53	7.26
13	Thousand kernel	33.82	25.0-42.0	16.50	10.29	26.79	12.01	15.30	62.0	6.58	19.45
	weight (g)										
14	Grain protein content (%) 12.41	12.41	11.40-14.10	0.23	0.31	0.54	3.86	5.92	43.0	0.65	5.20
Wh. of v:	Where; $\delta^2 e$ environmental variance; GA=Genetic advance; GAM= Genetic advance as percentage of mean GCV= genotypic coefficient of variation; $\delta^2 g$ –Genetic variance H ² = broad sense heritability; PCV= Phenotypic coefficient of variation, $\delta^2 p$ –phenotypic variance.	nce; GA= nce H ² = b	Genetic advance; or oad sense heritable	GAM= Gene ility; PCV= I	tic advance a Phenotypic c	as percentag	e of mea f variati	un GCV: on, δ ² p	= genot pheno	ypic coef typic var	ficient iance.

(1428)

kernel weight, while low genetic advances were noted for others such as days to 50% heading and grain protein content. The combination of high heritability and high genetic advance, particularly observed in traits like plant height, spike length, and number of grains per spike, indicates the potential effectiveness of selection in early generations for these traits. These findings align with previous studies Tilahun *et al.*, ²⁹ and underscore the importance of considering both heritability and genetic advance in breeding programs for durum wheat improvement.

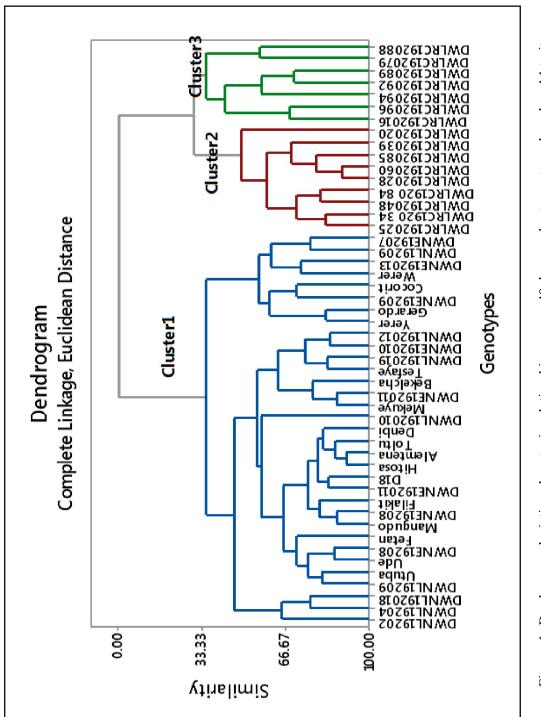
Genotypic Correlation Analysis :

Table-8 presents the genotypic correlation coefficient estimates for 14 traits across the 49 durum wheat genotypes. Strong positive associations were observed among DTH, DTM, and GFP, with DTH also positively correlated with PHT, NTP, SPS, and SPL. Conversely, DTH exhibited negative correlations with NGS, HLW, BY, GY, and HI, indicating that late-maturing genotypes may experience reduced yield due to terminal stress. DTM showed significant positive correlations with GFP but negative correlations with GY, HI, and GPC. GFP correlated positively with several traits including TKW, HLW, BY, GY, and HI, while negatively correlated with others like PHT, SPS, SPL, and GPC. Similarly, PHT exhibited positive correlations with NTP, SPL, SPS, and GPC, but negative correlations with NGS, TKW, HLW, BY, GY, and HI. Notably, traits strongly correlated with grain yield could serve as indicators for indirect selection techniques, whereas those negatively correlated, like GPC, justify separate selection strategies.

Phenotypic Correlation Analysis :

Phenotypic correlation coefficients among different traits were computed and presented in Table-8. DTH showed strong positive correlations with DTM, PHT, NTP, SPL, and SPS but negative correlations with NGS, HLW, BY, GY, and HI, suggesting that late-heading genotypes may have reduced yield potential. DTM displayed strong positive correlation with GFP but weaker associations with other traits. PHT correlated positively with NTP, SPL, and SPS but negatively with NGS, HLW, BY, GY, and HI, indicating that longer PHT may lead to reduced yield and yieldcontributing traits. Similarly, NTP exhibited positive correlation with SPL, SPS, and GPC but negative correlations with NGS, TKW, BY, GY, HLW, and HI. Strong positive correlations of NGS with TKW, HLW, BY, GY, and HI suggest its utility as an indirect/direct selection criterion for higher grain yield in durum wheat populations. TKW correlated positively with HLW, BY, GY, and HI but negatively with GPC, suggesting the need for separate breeding strategies when aiming for higher TKW and GPC. Overall, these results align with previous findings and underscore the complexity of trait associations in durum wheat breeding¹.

Cluster Analysis :


The 49 durum wheat genotypes were subjected to cluster analysis, resulting in three major clusters based on Euclidean distances (Fig. 2). The dendrogram illustrates the variability among the tested genotypes, with distinct groupings observed. Cluster one predominantly comprised released durum wheat varieties and 16 advanced lines, indicating similarity in their genetic background, likely stemming from common sources such as CIMMYT and ICARDA. Conversely,

(1430)

	efficients a			ina yie	ela rela	ted trai	ts of	49 durun	n wheat genoty		
Traits	DTH	DT		GFI	D	PHT		NTP		SPL	NSP
DTH		0.8	75**		24ns	0.358	**	0.321*	*	0.387**	0.306**
DTM	0.999**			0.66	58**	0.138	ns	0.174n	S	0.105ns	0.060ns
GFP	0.871**	0.9	99**			-0.27	2ns	-0.142	ns	-0.384**	-0.351**
PHT	0.389**	0.1	21ns	-0.4	26**			0.681*	*	0.683**	0.550**
NTP	0.410**	0.4	.99**	0.32	26*	0.999)**			0.495**	0.411**
SPL	0.412**	0.0	96ns	-0.9	99**	0.712	**	0.749*	*		0.745**
NSP	0.404**	-0.	013ns	-0.9	99**	0.622)** '	0.741*	*	0.829**	-
NGS	-0.362*	-0.1	218ns	0.35	56*	-0.85	4**	-0.857	**	-0.685**	-0.401**
TKW	-0.175ns	0.0	695ns	0.99	93**	-0.41	3**	-0.515	**	-0.384**	-0.354**
HLW	-0.353**	-0.	0928ns	0.62	29**	-0.77	2**	-0.843	**	-0.652**	-0.542**
BY	-0.468**	-0.1	264ns	0.60)4**	-0.61	8**	-0.613	**	-0.470**	-0.289*
GY	-0.516**	-0.	331*	0.72	23**	-0.81	8**	-0.833	**	-0.680**	-0.454**
HI	-0.471**	-0.	321*	0.72	27**	-0.84	2**	-0.889	**	-0.723**	-0.508**
GPC	0.015ns	-0.	294*	-0.8	19**	0.378)**)	0.839*	*	0.371**	0.205ns
NGS	TKW		HLW	V BY		GY		Y	H	II	GPC
-0.363**	-0.157r	ns	-0.32	1**	-0.386**		-0.	434**	-().402**	0.042ns
-0.171ns	0.064ns	5	-0.07			86ns -		20ns	-().186ns	-0.04ns
0.214ns	0.370**	*	0.333	0.333**		0.220ns		0.265ns 0		.244ns	-0.15ns
-0.739**	-0.392*	**	-0.72	-0.721**		-0.479**		-0.697** -().724**	0.260ns
-0.647**	-0.341*	**	-0.57	8**	-0.359**		-0.	-0.539** -).573**	0.341**
-0.598**	-0.352*	*	-0.61	7**	-0.4	16**	-0.	.623** -0).652**	0.250ns
0.174ns	-0.273r	ıs	-0.40	8**	-0.22	26ns	-0.	350**	-().376**	0.164ns
	0.377**	*	0.711	**	0.59	8**	0.7	767**	0	.750**	-0.25ns
0.449**			0.693	}**	0.62	3**	0.6	581**	0	.609**	-0.51**
0.806**	0.719**	*			0.79	0**	0.9	903**	0	.832**	-0.51**
0.737**	0.701**	*	0.906	ó**			0.8	832**	0	.595**	-0.49**
0.887**	0.757**	*	0.976	5 * *	0.85	0**			0	.940**	-0.49**
0.921**	0.702**	*	0.937	7**	0.69	1**	0.9	968**			-0.4**
-0.339**	-0.835*	**	-0.85	2**	-0.78	84**	-0.	662**	-().535**	

Table-8. Genotypic (below diagonal) and phenotypic (above diagonal) correlation coefficients among yield and yield related traits of 49 durum wheat genotypes

Note: ** = highly significant (P<0.01); * = significant (P<0.05); and ns= non-significant (P>0.05). BY= Biomass yield, kg/ha, DTH= date of heading, DTM= Days to 90% maturity; GFP= Grain filling period; GPC= Grain protein content %. GY= Grain yield, kg/ha; HI= Harvest index, %; HLW= hectoliter weight, kg/hl; NGS= Number of grains per spike; NPS= number of spikelets per spike; NTP= Number of tillers per plant; PHT= Plant height, cm; SPL= Spike length, cm; TKW= 1000 kernel weight, g.

(1432)

cluster II consisted of 9 landraces, while cluster three encompassed seven landraces (Table-10). This clustering pattern provides valuable insights for durum wheat breeding programs, facilitating the selection of appropriate genotypes for specific agro-ecologies in Ethiopia³⁰. Table-11 shows the intra-cluster and inter-cluster distance values, with cluster 1 containing 33 genotypes exhibiting the highest intra-cluster distance. Particularly, the largest

inter-cluster distance was observed between clusters I and III, followed by clusters I and II. This suggests that hybridization between parents from clusters I and III may yield higher heterotic values compared to other combinations. Consequently, selecting parents for hybridization based on large inter-cluster distances could facilitate the isolation of valuable recombinants in segregating generations¹³.

Table-9. Cluster analysis based on 14 traits in 49 durum wheat genotypes

Clusters	Genotypes
1	DWNL2, DWNL4, DWNL18, DWNL9, Utuba, Ude, DWNE8, Fetan, Mangudo, DWNL8, Filakit, DWNL11, D-18, Hitosa, Alemtena, Toltu, Denbi, DWNL10, Mekuye, DWNL11, Bekelcha, Tesfaye, DWNL19, DWNE10, DWNL12, Yerer, Gerardo, DWNE9, Cocorit, Werer, DWNE13, DWNL9, DWNE7.
2	DWLR25, DWLR34, DWLR48, DWLR84, DWLR28, DWLR60, DWLR85, DWLR39, DWLR20.
3	DWLR16, DWLR96, DWLR94, DWLR92, DWLR89, DWLR79, DWLR88.

Table-10. Intra (diagonal) and inter cluster distances for the three cluster classes of 14 traits of 49 durum wheat genotypes.

Clusters	Ι	II	III
Ι	3.34	5.69	7.25
II		3.35	5.32
III			5.18

Table-12 provides the cluster mean values for the three clusters identified in the analysis. *Cluster I:* This cluster is characterized by high grain yield, a higher number of grains per spike, higher 1000 kernel weight, higher hectoliter weight, higher biomass yield, higher harvest index, and lower protein content. *Cluster II:* In this cluster, traits such as lower grain filling period, longer plant height, higher number of spikelets per spike, and longer spike length are predominant. *Cluster III:* The third cluster, consisting of 7 durum wheat genotypes, is mainly characterized by lower grain yield, longer days to 50% heading, longer days to 90% maturity, a higher number of tillers, lower number of grains per spike, lower 1000 kernel weight, lower hectoliter weight, lower biomass yield, lower harvest index, and higher protein content. These distinct characteristics among the clusters highlight the genetic diversity present within the durum wheat genotypes, providing valuable information for breeding programs aimed at enhancing specific traits such as yield, maturity, and grain quality.

(1433)

X7 ' 11		Clusters	0 91
Variables	Ι	II	III
Days to 50% heading	61.68	62.72	68.04
Days to 90% maturity	94.08	92.03	100.4
Grain filling period	32.39	29.31	32.32
Plant height (cm)	77.29	101.4	97.68
Number of tillers per plant	3.34	4.22	4.54
Spike length (cm)	5.49	7.79	6.9
Number of spikelets per spike	16.79	18.33	17.75
Number of grains per spike	49.27	31.99	29.53
Thousand kernel weight (g)	35.68	31.44	28.79
Hectolitre weight (kg/hl)	78.28	72.64	70.42
Biomass yield (kg/ha)	8963.64	8440.71	6853.93
Grain yield (kg/ha)	3311.79	2542.08	1958.75
Harvest index (%)	37.64	29.87	28.53
Grain protein content (%)	12.26	12.6	12.88

Table-11. Mean values of the three clusters for 14 traits of 49 durum wheat genotypes

Table-12. Principal components (PCs) for 14 characters of durum wheat genotypes

Characters	PC1	PC2	PC3
Grain yield	0.358	-0.009	0.185
Biomass yield	0.292	-0.006	0.336
Date of heading	-0.183	0.506	0.083
Date of maturity	-0.076	0.641	-0.040
Grain filling period	0.128	0.513	-0.208
Grain protein content	0193	-0.143	-0.380
Harvest index	0.341	-0.015	0.057
Hectoliter weight	0.350	0.074	0.137
Number of grains/ spikes	0.306	-0.052	0.012
Number of spikes/spikes	-0.205	-0.049	0.543
Number of tillers	-0.265	0.055	0.157
Plant height	-0.314	0.013	0.247
Spike length	-0.291	-0.026	0.404
1000grain weight	0.258	0.186	0.303
Eigen value	6.952	2.275	1.427
Variability (%)	49.654	16.248	10.190
Cumulative %	49.654	65.902	76.092

Principal component analysis :

The principal component analysis was made to estimate the relative contribution of the different traits studied towards the overall genotypes among the released variety, advanced lines, and landrace of durum wheat. In the present investigation, only the first three principal components showed Eigen values greater than one and cumulatively they explained 76.092% variability (Table-9). The PC1 had 49.654%, PC2 showed 16.248% and PC3 showed 10.190% variability among the genotypes for the characters under study. The first two principal components PC1 and PC2 values contributed more to the total variation. Because the first principal component accounts for maximum variability in the data with respect to succeeding components¹⁵.

In addition to cluster analysis, Principal Component Analysis (PCA) was performed to identify the key traits contributing to phenotypic variability among the durum wheat genotypes. The first principal component (PC1) was primarily influenced by grain yield, harvest index, hectoliter weight, and the number of grains per spike. These traits collectively represent the yield potential and grain quality of the genotypes. The second principal component (PC2) was mainly affected by days to heading, days to maturity, and grain filling period, indicating their role in determining the maturity and phenological characteristics of the genotypes. The third principal component (PC3) was primarily influenced by biomass yield, grain protein content, the number of spikes per spike, spike length, and 1000-grain weight. These traits contribute to biomass production, protein content, and spike morphology. The significant variations observed across these principal components suggest ample opportunities for phenotypic improvement through targeted selection and conservation of genotypes for future breeding programs. By understanding the cumulative effects of multiple traits through PCA, breeders can make informed decisions regarding the selection of parents for hybridization and the design of breeding strategies to enhance specific agronomic traits. Similar approaches utilizing principal component analyses have been reported in previous studies, demonstrating their effectiveness in grouping wheat genotypes and identifying key traits influencing phenotypic variability^{10,24}.

The study reveals substantial genotypic variability among durum wheat genotypes, with many exhibiting superior traits suitable for direct utilization in breeding and selection programs. These genotypes can serve as valuable genetic resources for enhancing grain yield and quality traits. While grain yield is strongly correlated with various yieldcontributing traits, it's negatively associated with grain protein content (GPC). Hence, indirect selection methods or multi-trait selection strategies can be employed to improve grain vield while considering GPC. The findings provide valuable insights for planning crosses and maximizing the utilization of phenotypic variability to develop high-yielding genotypes. Specifically, genotypes such as Utuba, Hitosa, and DWNE9 are recommended for Debre Zeit, while Fetan, DWNE9, DWNE13, and Denbi are suitable for Minjar due to their superior grain yield performance. Particularly, genotype DWNE9 demonstrated high yield potential across both locations. Traits such as grain yield, biomass, harvest index, hectoliter weight, number of grains per spike, and kernel weight are suggested for indirect selection due to their positive and significant associations with grain yield. However, it's essential to recognize that these traits are polygenic and heavily influenced by environmental factors. Therefore, further assessment across multiple seasons and locations is to justify, validate the findings and ensure the strength of future breeding programs. Continued research efforts will contribute to the development of durum wheat varieties with improved agronomic performance and adaptability to diverse environmental conditions.

Data Availability

Data is available in the manuscript.

Conflict of Interest

The authors do not have any possible conflicts of interest.

The authors would like to thank Debre Zeit Agricultural Research Center (DZARC) for extending research facilities to this study.

References :

- 1. Akram, Z., SU Ajmal and M. Munir (2008). *Pakistan J. Bot.*, 40(4): 1777-1781.
- Alemayehu Zemede, Mekbib Firew, Assefa Kebebew, and Z. Zewdie Bishaw, (2019). *Ethiopian Journal of Agricultural Science.*, 29(2): 17-29.
- 3. Alemu Ahadu, Azene Yohannes, Anley Tigiest Menzir, and Abebe Dejene, (2020). *Cogent Food and Agriculture*, 6(1): 1778604.
- Allard, R. W. Principles of plant breeding. 2nd edition, John Wiley and sons, New York. 1999.

- 5. Bassi, F.M and M. Sanchez-Garcia (2017). *Crop Sci.*, *57*: 1-12.
- 6. Bekele Shiferaw, Kassie Menale, Jaleta Moti, and Yirga Chilot, (2014). *Food Policy.*, 44: 272-84.
- Bingham J. (1969) Agric. Prog., 44: 30-42.
- 8. Bowden, W.M. (1959). *Canadian Journal* of *Botany.*, *37*: 657-84.
- 9. Burton, GW. and EH. De Vane (1988). *Aron.J.* 4., 5: 478-481.
- 10. Dargicho Dutamo, Alamerew Sentayehu, Eticha Firdisa, and Assefa Ermias (2016). Journal of Biology, Agriculture and Healthcare., 5:(17): 140-147.
- Dejene Kassahun, Yosef Mengistu, Kidane Gebreha waryat, C Fadda, and ME. Pè, (2016). *Plant Genet. Resour.*, *1*-11.
- Desta Bizuwork Tafes and Yibekal Almayehu (2020). Cogent Food and Agriculture., 6: 1. DOI: 10.1080/23311932.2020.1766733.
- 13. Diers, BW., PBE. Mcvetty and TC Osbom (1996). *Crop Sci.*, *36*: 79-83.
- FAO. "FAOSTAT", FAO, Rome, (2017). available at: http://faostat.fao.org.accessed 15 January- September.
- 15. Leilah, A.A. and S. A. (2005). *Elsevier.*, *61*: 483-496.
- Malbhage, A. B., M. M. Talpada, V. S. Shekhawat, and D. R. Mehta, (2020). Journal of Pharmacognosy and Phytochemistry., 9 (4): 3233-3236.
- Meyer, M., N. Bacha, T. Tesfaye, Y. Alemayehu, E. Abera, and B. Hundie, (2021). *PLoS ONE.*, *16*(2). E0245697.
- Miller PA., HA. Al-Jibouri and HF. Robinson (1958). Agronomy Journal., 50: 633-635.
- 19. MoANR (2018). (Ministry of Agricultural and Natural resource. Plant variety release, protection and seed quality control

directorate. Addis Ababa, Ethiopia.

- 20. Moroni, L. (2018). *Trends biotechnology.*, *36*: 384-402.
- Negash Geleta, N., and H. Grausgruber, (2013). Science, Technology and Arts Research Journal., 2: (1), 01-09.
- 22. Rathwa, HK., AG. Pansuriya, JB. Patel, and RK. Jalu (2018). *International Journal* of current Microbiology and applied Sciences., 7. ISSN: 2319-7706.
- 23. Robertson, Alan. (1959). *Biometrics.*, *15*: 3:469-85.
- Saif Ullah Ajmal, Nasir Mahmood Minhas, Anber Hamdani, Ammara Shakir, Muhammad Zubair and Zaheer Ahmad. (2013). *Pak. J. Bot.*, 45 (5): 1643-164.
- Sharma, J. R. (1998). Statistical and biometrical techniques in plant breeding. New Age International (P) limited,

publishers. New Delhi., 432p.

- Singh, GP., KR. Maurya., B. Prasad, and AK. Singh, (1994). Journal of appl. Biol., 4: 19-22.
- 27. Sneath, P. and R. Sokal (1973). Numerical Taxonomy. San Francisco: W. H. Freema.
- 28. Tadesse, W., M. Solh, HJ. Braun, T. Oweis and M. Baum, (2016). Approaches and strategies for sustainable wheat production. Beirut: *International Centre for Agricultural Research in the Dry Areas* (ICARDA).
- 29. Tilahun, B., T. Habtamu, and L. Tesfaye, (2020). Agriculture, Forestry and Fisheries., 9: 128-134. DOI: 10.11648/ j.aff.20200904.15.
- Zewdie, B., PC. Struik, and Gastel, JG. Van (2014). *Afr: J. Agric. Res.*, 9(38): 2948-2963.

APPENDIX

per spike; GPC= Grain protein content, GY=Grain yield, HI= Harvest index; HLW= hectoliter weight; NSP= Number of 50% heading; DTM= Days to 90% maturity; Df= Degree of freedom; GFP= Grain filling period; NGS= Number of grains 76.43 Where, ** = significant at (P<0.01), *= significant at (P<0.05; ns= non-significant.; BY= Biomass yield; DTH= Days to spikelet per spike; NTP= Number of productive tillers per plant; PHT= Plant height; SPL= Spike length; TKW= Thousand 16.34 4.31 4.61 12.54 12.28 63.14 62.28 8517 3043 34.39 35.42 Debre-| Minjar Debre-|Minjar|Debre-|Minjar 97.96 91.09 28.81 81.81 8.88 13.94 44.96 41.55 32.59 35.04 6.01 3.0 Mean 34.83 75.82 8615 2987 87.44 18.08 4.31 6.21 zeit 8.29 13.99 16.75 19.45 3.64 10.37 8.16 3.49 9.52 9.74 16.87 2.38 4.51 5.41 9.01 9.89 2086597.50** 1381928** 264143 265058 5.97 6.04 CV (%) 3.96 2.78 7.79 6.17 7.8 1.01 83908 7.15 zeit 0.32 19.56 0.34 16.25 33.55 11.9 5.18 2.17 0.35 8.17 Error (Df=36) 7.1 45643 0.29 15.95 11.43 5.46 11.97 8.33 7.17 0.52 0.24 2.31 1.24 zeit 3.1 660158** 154.25** 275.85** 22.76** 22.51ns 63.52** 40.56^{**} 39.76** 1.17^{**} 19.73 **3.11** Minjar 0.4 ns4.20*Genotypes (Df=48) Debrezeit and Minjar. 846807** 28.00^{**} 167.93** Debrezeit 31.95** 257.29** 44.88** 26.24** 55.98** 43.84** 0.87**2.45** 1.62^{**} 2.51 **181706 327631 BLK (Rep) (Df=12) Minjar 14.34 32.12 63861 17.02 15.02 16.73 11.52 3.69 0.35 3.83 5.2 0.5 0.51 Debre-73114 27.02 75.22 0.223.84 3.48 7.33 0.72 0.35 9.61 2.63 1.69 7.51 zeit 232728 1113245 90616 106129 104.09 Debre- Minjar 17.15 20.66 36.73 25.51 3.96 0.16 0.18 0.17 2.61 0.5 0.1 Rep (Df=1) 0.003 0.1639.22 0.18 2.95 1.72 79.0 3.92 1.23 10.2 2.61 8.0 zeit HLW, kg/hl BY, kg/ha GY, kg/ha SPL, cm PHT, cm GPC, % TKW, g HI, % Traits DTM DTH NGS NTP NSP GFP 14 SN 13 12 П 10 2 4 Ś 9 ∞ 6 \mathcal{C}

kernel weight

Appendix Table-1. Analysis of variance for agronomic traits in durum wheat genotypes tested at

(1437)

(1438)

S	Genotypes	D7		DT	genotypes M	GF		PHT	(cm)
N	2	D/zeit	Minjar	D/zeit	Minjar	D/zeit	Minjar	D/zeit	Minjar
1	DWNL2		•	104.0a-d	5	34.5d-i	-	82.0h-m	74.0i-o
2	Yerer				101.0abc		33.0a-f		72.0j-o
3	DWNL39		60.0g-k		87.5h-k	34.0e-j	27.5c-h		71.0j-o
4	DWLRC25	64.0f-j	62.5d-j	91.0jk	96.0a-g	27.0lm		103.0bcd	
5	DWNL4	59.0mn	62.5d-j	95.0hij	86.0ijk	36.0a-i		81.0h-n	76.5i-l
6	DWLRC34	64.0f-j	62.0e-j	97.0e-h	90.0f-j	33.0f-k		103.0bcd	
7	Ude	59.0mn		95.0hij	83.5jk	36.0a-i	25.5e-h		73.5i-o
8	DWLRC28		ř	101.0 c- f		35.0c-i		109.5ab	102.0bc
9	DWNE9	64.0f-j	63.0d-i	100.5d-g			32.0a-f		81.5hi
10	Mekuye	2	59.5h-k		87.5h-k	36.0a-i		78.0k-q	76.0i-m
11	DWLRC39		60.5f-k	92.0ij	89.0g-j	30.5i-l		108.0abc	92.0fg
12	Mangudo	59.0mn	59.5h-k	97.5e-h	88.0g-k	38.5a-f	28.5c-h	84.5g-k	74.5i-o
13	DWNE11	61.0i-n	60.0g-k	97.0e-h	89.0g-j	36.0a-i		76.0m-q	67.5mno
14	Hitosa	58.5n	59.0ijk	96.5f-i	86.5ijk	38.0a-f	27.5c-h	84.0g-l	73.0i-o
15	DWLRC 60	68.0b-e	65.5a-e	96.5f-i	97.5a-f	28.5j-m	32.0a-f	98.5de	104.0b
16	Tesfaye	60.0k-n	60.5f-k	97.0e-h	86.5ijk	37.0a-h	26.0d-h	79.0i-q	75.0i-o
17	DWNL10	58.0n	57.0k	85.51	85.0jk	27.5klm	28.0c-h	77.0lm-q	68.5l-o
18	Denbi	59.0mn	59.5h-k	96.0ghi	85.5jk	37.0a-h	26.0d-h	79.5i-o	77.5ijk
19	DWNE10	63.0g-l	61.5e-k	104.5a-d	87.0h-k	41.5a	25.5e-h	74.5n-q	67.0no
20	DWLRC48	58.0n	59.0ijk	86.5kl	87.0h-k	28.5j-m	28.0c-h	113.0a	98.0b-f
21	DWNL18	65.0e-h	62.0e-j	101.0c-f	89.0g-j	36.0a-i	27.0c-h	82.0h-m	70.0k-o
22	Werer	71.0ab	65.5а-е	106.0ab	103.0ab	35.0c-i	37.5ab	80.5h-n	75.5i-n
23	DWLRC6	71.0ab	69.5ab	98.0e-h	103.5a	27.0lm	34.0a-d	110.0ab	113.0a
24	Utuba	64.0f-j	60.5f-k	97.0e-h	88.5g-j	33.0f-k	28.0c-h	87.5fgh	79.5hij
25	DWNL9	64.0f-j	61.5e-k	104.5a-d	89.5f-j	40.5abc	28.0c-h	85.5g-j	76.0i-m
26	Alemtena	59.0mn	59.5h-k	96.0ghi	87.5h-k	37.0a-h	28.0c-h	78.5j-q	71.0j-o
27	DWNE8	59.0mn	59.0ijk	96.5f-i	80.0k	37.5a-g	21.0h	84.0g-l	72.5j-o
28	Fetan	64.5e-i	61.0e-k	96.5f-i	86.5ijk	32.0g-l	25.5e-h	84.0g-l	72.5j-o
29	DWLRC20	61.5h-n	63.0d-i	86.01	88.0g-k	24.5m	25.0fgh	106.5abc	93.0d-g
30	DWNL11	59.0mn	59.5h-k	97.0e-h	86.5ijk	38.0a-f	27.0c-h	79.5i-o	76.0i-m
31	D-18	60.0k-n	62.0e-j	97.5e-h	88.0g-k	37.5a-g	26.0d-h	73.0opq	67.0no
32	DWLRC94	65.0e-h	64.5c-g	98.0e-h	96.0a-g	33.0f-k	31.5a-g	98.0de	94.0c-g

Appendix Table-2. Mean date of heading, days to 90% maturity, grain filling period and plant height of the 49 durum wheat genotypes for tested at two locations

(1	439)	
)	

33	Gerardo	70.0abc	68.0abc	106.5a	101.5abc	36.5a-h	33.5а-е	82.5h-m	78.5ijk
34	DWNE13	64.0f-j	63.0d-i	104.0a-d	97.5a-f	40.0a-d	34.5abc	79.5i-o	75.0i-o
35	Cocorit	62.5g-m	64.0c-h	98.0e-h	90.0f-j	35.5b-i	26.0d-h	78.0k-q	78.5ijk
36	DWLRC96	72.0a	69.5ab	105.0a-d	99.5a-d	33.0f-k	30.0a-g	93.5ef	87.5gh
37	Bekelcha	60.5j-n	58.5ijk	97.5e-h	88.5g-j	37.0a-h	30.0a-g	79.0i-q	77.0ijkl
38	DWNE7	64.0f-j	61.5e-k	104.5a-d	91.5d-j	40.5abc	30.0a-g	103.5bcd	91.5fg
39	Toltu	58.5n	61.0e-k	97.5e-h	89.0g-j	39.0а-е	28.0c-h	74.5n-q	71.0j-o
40	DWLRC92	67.0c-f	65.0b-f	104.5a-d	103.0ab	37.5a-g	38.0a	101.5cd	99.0b-f
41	DWLRC79	72.0a	69.5ab	105.5abc	99.0а-е	33.5e-j	29.5b-g	90.0fg	92.5efg
43	DWLRC84	59.51mn	60.5f-k	86.01	88.5g-j	26.5lm	28.0c-h	101.0cd	92.5efg
44	DWLRC85	65.5efg	64.0c-h	97.5e-h	96.0a-g	32.0g-l	32.0a-f	102.0cd	102.0bc
45	DWNL12	60.0k-n	61.0e-k	97.5e-h	89.0g-j	37.5a-g	28.0c-h	73.0opq	71.0j-o
46	DWLRC88	63.5f-k	62.0e-j	95.0hij	90.0f-j	31.5h-l	28.0c-h	106.0abc	101.5bcd
47	DWLRC89	72.0a	70.0a	105.5abc	102.5ab	33.5e-j	32.5a-f	86.0ghi	95.0c-g
48	DWNL19	59.0mn	60.5f-k	96.0ghi	86.0ijk	37.0a-h	25.5e-h	73.0opq	66.50
49	Filakit	58.0n	57.0k	96.5f-i	85.5jk	38.5a-f	28.5c-h	83.0g-m	74.5i-o
	Mean	63.1	63.3	98.0	91.0	34.8	28.8	84.3	81.8
	CV (%)	2.7	3.7	2.4	4.5	8.3	13.9	3.9	5.4

Note: Numbers followed by same letter in the column are not significantly different; CV=coefficient of variation DTH= date of heading; DTM= days to 90% maturity; GFP= Grain filling period; PHT= plant height.

Appendix Table 3. Mean number of tiller per plant, spike length, number of spikelet per spike, number of grain per spike and 1000kernel weight of 49 durum wheat genotype

S.	Genotypes	N	TP	SPL	(cm)	NS	SP	NGS	5	TKW	/ (g)
N.		D/zeit	Minjar	D/zeit	Minjar	D/zeit	Minjar	D/zeit	Minjar	D/zeit	Minjar
2	Yerer	3.5ef	3ab	7.25d-h	7.0d-h	18.0c-g	17.0b-f	52.0c-i	49.5b-g	38abc	40а-е
3	DWNL39	4def	3ab	4.75r	5.3k-r	16.0g	16.5b-g	45.5h-l	41.5e-n	36a-d	39a-f
4	DWLRC25	5.5bc	4a	5.9j-o	5.75i-p	18.5b-f	18.0a-d	34.0o-st	32.51-r	28e-h	32g-k
5	DWNL4	3.5ef	3.5ab	6.65f-k	6.2h-m	20.5ab	17.0b-f	59.0abc	49.5b-g	30d-g	35e-i
6	DWLRC34	5cd	3ab	6.8e-j	6.4g-m	18.5b-f	16.5b-g	34.0o-t	30.5n-r	30d-g	36d-h
7	Ude	3.5ef	2.5b	5.85j-p	5.25k-r	17.5d-g	16.0c-h	57.0a-f	45.0d-k	38abc	43ab
8	DWLRC28	5.5bc	2.5b	8.8ab	8.55abc	20.5ab	17.5b-e	33.0p-t	29.50-r	32c-f	35e-i
9	DWNE9	4def	4a	5.95i-n	5.45k-r	18.0c-g	16.5b-g	63.5a	57.5ab	40ab	41a-d
10	Mekuye	3.5ef	3ab	4.950-r	4.8pqr	16.5fg	14.0gh	37.0m-r	35.5i-r	36a-d	43ab
11	DWLRC39	4.5cde	2.5b	8.95a	8.0bcde	21.0a	16.5b-g	32.0p-u	26.5pqr	28e-h	30i-1
12	Mangudo	4def	2.5b	5.2n-r	5.3k-r	18.5b-f	16.5b-g	57.5а-е	45.5с-ј	38abc	43ab

tested at two locations

13	DWNE11	3f	3ab	5.4m-r	5.3k-r	18.5b-f	17.0b-f	61.0ab	57.0abc	36a-d	37c-g
14	Hitosa	4def	3ab	5.8k-q	5.21-r	19.5a-d	15.5d-h	55.5a-g	45.5с-ј	32c-f	34f-j
15	DWLRC 60	5cd	3.5ab	8.55abc	8.65abc	20.0abc	18.5abc	36.0n-s	34.0j-r	30d-g	32g-k
16	Tesfaye	4def	2.5b	5.1n-r	4.90-r	17.0efg	15.5d-h	57.0a-f	57.5ab	24gh	30i-l
17	DWNL10	3.5ef	3ab	5.35m-r	4.7pqr	16.5fg	14.0gh	45.5h-k	37.0h-q	32c-f	36d-h
19	DWNE10	3f	2.5b	4.9pqr	4.5qr	16.5fg	14.0gh	56.5a-f	43.5d-m	32c-f	31h-l
20	DWLRC48	5cd	4a	7.65cde	7.65b-f	18.5b-f	16.5b-g	38.51-p	33.5k-r	32c-f	34f-j
21	DWNL18	4.5cde	3ab	5.85j-p	5.55j-q	19.0а-е	18.0a-d	63.5a	62.0a	26fgh	28kl
22	Werer	4def	3ab	5.4m-r	5.4k-r	17.0efg	16.5b-g	44.5i-m	47.0b-i	40ab	42abc
23	DWLRC6	5cd	3ab	7.15d-h	8.05bcd	20.0abc	20.5a	38.01-q	38.5g-o	30d-g	34f-j
24	Utuba	4def	2.5b	4.8r	5.15m-r	17.5d-g	16.0c-h	49.0f-k	46.0b-i	40ab	44a
25	DWNL9	3.5ef	2.5b	5.651-r	5.45k-r	17.5d-g	15.5d-h	50.0e-k	48.0b-h	36a-d	40а-е
26	Alemtena	4def	3ab	5.45m-r	5.1m-r	17.5d-g	16.0c-h	50.5d-j	47.5b-h	36a-d	34f-j
27	DWNE8	3.5ef	2.5b	5.8k-q	5.45k-r	18.0c-g	15.0e-h	60.0abc	43.5d-m	36a-d	40а-е
28	Fetan	3f	2.5b	5.85j-p	5.05m-r	18.0c-g	15.0e-h	52.0c-i	44.0d-1	27fgh	36d-h
29	DWLRC20	5cd	3ab	8.1a-d	8.15bcd	19.0а-е	17.5b-e	30.0q-u	28.0o-r	23h	28kl
30	DWNL11	4def	3ab	5.61-r	5.25k-r	17.5d-g	14.5fgh	44.5i-m	39.0f-o	42a	39a-f
31	D-18	3.5ef	3ab	6.85e-i	6.15h-n	18.5b-f	16.0c-h	53.5b-h	44.5d-k	36a-d	38b-f
32	DWLRC94	7a	4a	7.95bcd	7.15d-h	19.5a-d	17.0b-f	33.0p-t	23.0r	24gh	30i-1
33	Gerardo	3.5ef	3ab	7.45def	6.8e-i	18.5b-f	18.0a-d	42.5j-n	44.5d-k	40ab	42abc
34	DWNE13	4def	2.5b	4.7r	4.3r	16.0g	14.5fgh	48.0g-k	51.0a-e	36a-d	34f-j
35	Cocorit	5.5bc	3.5ab	5.8k-q	5.45k-r	18.5b-f	16.5b-g	44.5i-m	47.0b-i	34b-e	40а-е
36	DWLRC96	6.5ab	3ab	7.3d-g	6.45f-k	18.0c-g	17.5b-e	28.5s-v	31.0n-r	38abc	30i-1
37	Bekelcha	4.5cde	3ab	5.85j-p	5.65i-q	17.0efg	16.0c-h	44.0j-n	44.5d-k	38abc	40а-е
38	DWNE7	4def	3ab	5.15n-r	4.55pqr	17.0efg	13.5h	44.0i-n	38.0g-p	34b-e	38b-f
39	Toltu	3.5ef	3ab	5.35m-r	5.65i-q	16.5fg	17.0b-f	48.0g-k	51.5a-e	28e-h	32g-k
41	DWLRC79	4.5cde	2.5b	8.1a-d	8.8ab	17.5d-g	17.5b-e	21.5v	28.50-r	27fgh	22m
42	DWNL8	4def	3ab	5.5lm-r	5.15m-r	18.5b-f	15.0e-h	49.0f-k	50.5a-f	36a-d	38b-f
43	DWLRC84	5.5bc	3.5ab	6.65f-k	7.55c-g	17.5d-g	17.0b-f	29.0r-v	31.0n-r	26fgh	34f-j
44	DWLRC85	5.5bc	3.5ab	8.6abc	9.5a	19.5a-d	19.0ab	31.5p-u	32.0m-r	34b-e	32g-k
45	DWNL12	3f	2.5b	5.85j-p	5.0m-r	17.0efg	15.0e-h	52.0c-i	44.5d-k	28e-h	32g-k
46	DWLRC88	4.5cde	3.5ab	6.65f-k	6.75f-j	19.5a-d	18.5abc	34.0o-t	36.5h-q	24gh	26lm
47	DWLRC89	5.5bc	3.5ab	6.45g-l	5.55j-q	16.5fg	14.5fgh	24.5uv	23.0r	28e-h	29jkl
48	DWNL19	4def	3ab	4.85qr	4.95n-r	17.0efg	15.5d-h	56.5a-f	44.0d-1	30d-g	28kl
49	Filakit	4def	3ab	6.3h-m	5.7i-q	18.0c-g	16.0 c-h	42.0k-o	45.0d-k	36a-d	38b-f
	Mean	4.3	3.0	6.2	6.0	18	163	44.9	41.6	32.6	35.0
	CV(%)	16.75	19.45	7.8	9.9	6.2	9.0	8.9	13.9	10.4	8.2

Note: - Figures receiving the same letter within the column is not statistically different; CV=coefficient of variation, NGS= number of grains per spike, NSP= number of spikelets per spike, NTP= number of tillers per plant, SPL= spike length, TKW= 1000kernel weight.

(1441)

10 1	<i>a</i>	content of 49 durum wheat genotypes tested at two locations									
S	Genotypes			BY (kg	,	HI (%)		GPC (%)			
Ν		D/zeit	Minjar	D/zeit	Minjar	D/zeit	Minjar	D/zeit	Minjar		
2	Yerer	78.5abc	79.8abc	8865c-i	8755a-i	33.5f-m	35.85c-1	12.65c-l	13.0c-h		
3	DWNL39	79.6ab	80.4a	9127.5b-h	9321.9a-d	43.6a	36.95b-i	11.4mn	11.35nop		
4	DWLRC25	73.3fgh	73.7f-j	8680.05c-k	9014.5a-g	29.15j-q	34.65e-m	12.0i-n	12.4e-n		
5	DWNL4	77.5а-е	78.9a-f	7675.5k-o	8631.75a-j	34.4e-k	37.25b-i	13.05b-i	13.05c-g		
6	DWLRC34	72.3gh	73.4g-j	9251a-h	8860.9a-g	28.2m-q	30.75i-m	11.95j-n	12.05g-p		
7	Ude	77.2b-e	78.9a-f	8453.4e-l	8591.25b-j	42.4ab	35.15d-m	12.05i-n	12.55d-l		
8	DWLRC28	73.6fgh	74.2d-j	8710.25c-k	7769.5i-m	27.8opq	28.2m	12.75c-l	11.45l-p		
9	DWNE9	77.7a-d	78.0a-g	9395.25а-е	9209.25a-f	42.6ab	44.65a	11.9k-n	12.5d-m		
10	Mekuye	75.0d-g	79.0a-f	8818.75c-j	8619.25b-j	34f-1	39.65a-g	13.2b-g	11.75ј-р		
11	DWLRC39	69.1ij	69.2jkl	7893.65i-n	8554.5c-j	28n-q	29.2klm	13.2b-g	11.7ј-р		
12	Mangudo	79.7ab	80.3a	8952.75c-h	8881.25a-g	43.5ab	40a-f	12.3e-n	12.0g-p		
13	DWNE11	78.5abc	78.4a-g	9638.6abc	8940.75a-g	38.35a-f	36c-k	11.9k-n	12.60d-k		
14	Hitosa	80.3a	80.0abc	9510.9a-d	8921.15a-g	42.4ab	34.2e-m	12.35d-n	11.7ј-р		
15	DWLRC 60	73.3fgh	74.6c-j	7791.25j-n	8538.75с-ј	27.45pq	30.95i-m	12.4c-m	11.6k-p		
16	Tesfaye	74.5efg	75.2a-i	8882.75c-i	8907a-g	33.4f-n	38.1a-h	13.2b-g	12.45d-n		
17	DWNL10	75.0d-g	77.5a-h	8469d-l	8661.9a-j	31.8h-q	37.95a-h	12.05i-n	11.25op		
18	Denbi	79.6ab	80.1ab	8884c-i	9599.5ab	39.65а-е	41.75a-d	12.4c-m	11.6k-p		
19	DWNE10	78.2abc	78.1a-g	9111.5b-h	8745a-i	32.8g-p	34.5e-m	12.95c-k	12.25f-p		
20	DWLRC48	74.6efg	70.7i-l	10286.25a	7789.9h-m	29k-q	33g-m	13.25b-f	12.75d-j		
21	DWNL18	75.0d-g	77.1a-h	8935.5c-i	8914a-g	32.9g-o	35.1d-m	13.4bcd	11.9h-p		
23	DWLRC6	70.9hij	74.1e-j	8303g-m	7696.25j-m	28.6l-q	28.2m	11.85lmn	12.05g-p		
24	Utuba	80.1ab	80.2ab	9464.65а-е	8875.75a-g	43.15ab	36.15c-k	12.4c-m	11.65ј-р		
25	DWNL9	79.6ab	77.9a-g	9045c-h	9675a	34.5e-j	33.3f-m	12.45c-m	11.35nop		
26	Alemtena	79.2ab	79.2а-е	8920.75c-i	9559.5abc	36.9c-h	38.4a-h	12.1h-n	11.75ј-р		
27	DWNE8	78.1abc	78.2a-g	9477.5a-e	9216.75a-f	33.4f-n	41.75a-d	12.1h-n	11.7ј-р		
28	Fetan	80.3a	80.4a	8814c-j	9422abc	41.3abc	43.6ab	12.1h-n	11.4m-p		
29	DWLRC20	72.4gh	74.1e-j	7256.25no	7227.5k-n	30.95i-q	29.2klm	13.15b-h	15.05a		
30	DWNL11	78.1abc	78.4a-g	9293.5a-g	8569.5b-j	41.75abc	36.35c-j		13.35b-f		
31	D-18	79.0abc	79.0a-f	9385abcde	8679.25a-j	38.1b-g	41a-e	12.0i-n	12.0g-p		
32	DWLRC94	71.0hij	70.1ijkl	7263.75mno	7080mn	27.4pq	29.45j-m	14.8a	13.35b-f		
33	Gerardo	78.1abc	77.4a-h	10140.5ab	8638.5a-j	29.4j-q	37.25b-i	13.0c-j	11.55k-p		
34	DWNE13	77.4а-е	79.6a-d	8212.5h-n	9246a-e	35.75d-i	43.5ab	13.0c-j	11.65j-p		
35	Cocorit	76.1c-f	78.0ab-g		9474.5abc	33.5f-m	41a-e	11.85lmn			
36	DWLRC96	71.3hi	75.3a-i	8748.75c-j	6698n	28.2m-q	29.4jlm	11.3n	11.95g-p		

Appendix Table-4. Mean hectoliter weight, biomass yield, harvest index and percent grain protein content of 49 durum wheat genotypes tested at two locations

(1	442)
Ľ	Ŧ	112)

					1				
37	Bekelcha	78.5abc	78.8a-g	9378.25a-f	9135a-f	41.75abc	34.5e-m	12.85c-l	13.55bcd
38	DWNE7	78.4abc	77.9a-g	9378.75a-f	8182.9f-l	30.85i-q	33g-m	12.35d-n	11.2op
39	Toltu	79.2ab	78.8a-g	9350.65a-f	8824.5a-h	41.3abc	37.1b-i	12.2fg-n	12.25f-o
40	DWLRC92	73.8fgh	70.8i-l	8340.7f-1	7182.5lmn	29.15j-q	29.4jlm	12.75c-l	14.25ab
41	DWLRC79	68.0j	65.61	5541p	5318.250	28.651-q	28.4m	13.3b-e	11.65ј-р
42	DWNL8	79.3ab	79.3а-е	9493.55a-e	8249.75e-k	40.15abcd	42.6abc	12.1h-n	11.6k-p
43	DWLRC84	72.1ghi	70.9i-1	7570.751-o	8047.5g-m	28.2m-q	34.5e-m	12.1h-n	13.45b-e
44	DWLRC85	73.9fgh	72.2h-k	9688.75abc	9001.5a-g	29k-q	29.4jlm	12.25e-n	13.20b-f
45	DWNL12	74.6efg	78.0a-g	67430	9467.5abc	32.75g-p	36.65b-i	12.95c-k	12.4e-n
46	DWLRC88	61.0k	67.0kl	5004.25p	49330	27q	291m	13.45bc	14.10abc
47	DWLRC89	72.4gh	74.6c-j	5669.55p	8177f-l	27.05q	29.45j-m	12.9c-l	12.60d-k
48	DWNL19	73.1fgh	74.8b-i	8910.25c-i	9089.75a-g	28.61-q	32.9g-m	13.3b-e	12.95d-i
49	Filakit	78.6abc	78.6a-g	9102.15b-h	8333d-j	40.4a-d	32.55h-m	11.9k-n	12.5d-m
	Mean	76.4	76.4	8615.6	8517.1	34.4	35.4	12.6	12.3
	CV(%)	2.0	3.5	5.97	6.0	7.79	9.74	4.3	4.6

Note: Means followed by the same letter within the column are not significantly different at $P \le 0.05$; BY= biomass yield, CV=coefficient of variation, GPC= grain protein content, HI= harvest index, HLW= hectoliter weight.