
Abstract

The virtual water trade is recently developing one because of
sustainable use of water resource added in the SDG goals. Protection of
water resource will be bigger issue in developing countries like India.
Since, rice is the most stable food in Asian and African continents, India
becomes largest producer and exporter in the world. This research paper
examines the dynamics of India’s rice export trade from 2014 to 2023,
analysing growth rates, instability indices, market transition probabilities,
net virtual water status and gravity model to identify the factor
determinants among major importing countries. West African nations,
including Côte d’Ivoire, Benin, and Senegal, exhibit high growth in rice
imports from India. Contrastingly, imports by Bangladesh have declined.
The application of the gravity model provides insights into key
determinants of trade, such as GDP, geographical distance, population,
arable land, and exchange rates. Results indicate a positive relationship
between importing countries’ GDP and demand for Indian rice, while
distance negatively impacts trade volumes. Notably, the model highlights
that countries with higher arable land tend to import more rice, suggesting
a correlation between agricultural land availability and rice demand. This
research contributes to understanding the interplay of economic,
geographic and agricultural factors in international rice trade and
underscores India’s strategic role in meeting global rice demand despite
market volatility.
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Water is one of the most vital
resources for life on earth, yet it is becoming

increasingly scarce due to various factors such
as population growth, climate change, and
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unsustainable agricultural practices22. Water
Scarcity was recognized by the United
Nations36 as a critical global issue, water scarcity
refers to the lack of sufficient available water
resources to meet the demands of water usage
within a region. As demand for water continues
to rise, particularly in agricultural production
which accounts for approximately 70 per cent
of global freshwater use innovative approaches
to water management have become
essential11.

Allan,1 introduced a tern ‘virtual
water’ for the embedded water presented in
the products, which is used in all the stages of
production of that product. Virtual water trade
presents an opportunity for nations facing
water scarcity to leverage their comparative
advantages in production while simultaneously
addressing regional disparities in water
availability. The concept of virtual water trade,
which allows countries to manage their water
resources more effectively through the
international exchange of water-intensive
products. Countries with abundant water
resources can export water-intensive products,
while those suffering from water stress can
import these products, effectively transferring
water resources from one region to another
through the medium of trade (Allan, 2003).
The evolution of this concept gained
momentum with the advent of globalization and
advanced trade practices, where the inter-
connectedness of global supply chains brought
to the forefront the local and remote water
resources utilized in the production of
commodities16. As countries began to import
water-intensive crops, the hidden water cost
within these global trade patterns came under
scrutiny, leading to a paradigm shift in water

resource management and policy39.

In recent years, the virtual water
concept has undergone significant developments,
supported by cutting-edge research that
quantifies water use across various sectors and
geographies. Notably, the Water Footprint
Network has been instrumental in formalizing
the methodologies for calculating virtual water,
further enriching the discourse surrounding
water use efficiency and sustainability16. By
understanding the virtual water content of
various products, countries can identify
opportunities to import water-intensive goods
instead of producing them domestically,
thereby conserving their limited water
resources17.

Rice is a staple food for more than
half of the world’s population, making it a
critical commodity in the global agricultural
trade23,  India, with its diverse agro-climatic
conditions and substantial agricultural output,
has consistently been one of the largest rice
producers. India is the world’s top exporter of
rice, accounting for 30 per cent of global
exports in 2023, while its imports account for
less than one per cent of global imports.

The country’s rice trade dynamics are
influenced by a myriad of factors including
economic growth, population changes,
technological advancements in agriculture.
Given the increasing global demand for rice,
understanding the determinants of India’s rice
exports can provide valuable insights for
stakeholders ranging from policymakers to
exporters and researchers21.

Understanding the trade trends and
flows of India’s rice exports is essential for
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formulating effective trade policies and
strategies to enhance its competitive edge. This
research aims to understand the Indias rice
trade trend, stability, shifts and status of virtual
water trade. Employed various analytical tools
including the compound growth rate, Cuddy-
Della Valle instability index, Markov chain,
estimation of net virtual water content and
gravity model to provide a comprehensive
understanding of the factors influencing rice
trade dynamics.

Table-1. Selection of product from India’s
total export volume (2014-2023)

      Products Total Export (MT)
Non-Basmati Rice 98074931.94
Basmati Rice 41554145.25
Wheat 24206207.82
Maize 20194935.07
Groundnuts 5965763.27
Fresh Onions 17082720.53
Fresh Grapes 1990931.41
Mango Pulp 1223303.43
Millet 1808975.31
Sugar 52035489.00

The major agricultural products that
are exported from India during 2014 to 2023
has been collected from APEDA and presented
sum total in table-1.

Rice (non-basmati rice & basmati
rice) has highest export in terms of quantities,
although it is one of the high-water intensive
crop. Both non-basmati rice and basmati rice
from India has been listed under one category
as Rice in FAOSTAT, we have taken rice for
this research. India’s rice export and import
data were collected from FAOSTAT database
for the period 2014 to 2023 to estimate the
growth rate, instability index, trade direction
(Markov chain), virtual water content for
export, import and gravity model.

Selection of Independent variables for
Virtual water trade determinants :

A gravity model for virtual water trade
usually extends the traditional model of
bilateral trade by incorporating variables that
specifically affect water use in trade, such as
virtual water content.

Table-2. Source and references for independent variables of gravity model
Variables           Source               References
GDP www.data.worldbank.org (Head & Mayer, 2014; Shepherd, 2013)
Pop www.data.worldbank.org (Yang et al., 2006)
D CEPII and www. trademap.org (Shivaswamy et al., 2021)
ER www.data.worldbank.org (Baier et al., 2014)
AR www.data.worldbank.org (Fracasso, 2014)

Compound Growth Rate :

The growth rate for India’s rice export
(quantity) was analysed by using CAGR.
(Agarwal et al., 2017; Mohanakrishnan et al.,

2024) employed the compound annual growth
rate to study the India’s Trade performance
of Poultry Products and poultry production, the
same method was employed in this study,

y = a b t eu
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Take the natural logarithm, it becomes
log y = c + t log b + e

       It can be written as    lnYt = β1 + β2t + ut

β1 and β2 are estimated by ordinary least
squares (OLS) method.
where, t – time variable, Y- growth rate of
variables and b1- regression coefficient of t
on Y.
The Compound Annual Growth Rate (CAGR)
is obtained as a following way

(%) ܴܩܣܥ   = − 1ߚ ݈݃݅ݐ݊ܣ)  1)  ∗  100 
The significance of CGR (r) is given by

= ݐ  
ݎ

(ݎ) ܧܵ
   for df (n-2)

where, ܵ(ݎ) ܧ  = ∗ ߚ 100]   ݁ ݈݊ / [(ߚ ݈݊) ܧܵ 
and ln e = 0.4343

Cuddy-Della Valle Instability Index (Ix):

The Instability Index was computed
to examining the degree of instability for rice
export from India. The Cuddy-Della index is
the most commonly employed tool for

measuring the instability of time series data
and is widely accepted. John Cuddy and Della
Valle created the indices in 1978 to quantify
the instability of time series data. This index is
an improved measure than coefficient of
variation (CV) as it is inherently adjusted for
trend, often observed in time series data. This
index is measured in per cent, it means nothing
but corrected CV. Similarly, the study was used
by Suresh et al.,34 to study the instability in
India’s meat export and (Mohanakrishnan et
al., 2024) used in India’s poultry production
and export.

(%) ݔܫ  = ඥ(1 ݔ ܸ.ܥ  − ݆ܽ݀.ܴ2) 

where,
Ix – Instability Index, C.V. –

Coefficient of Variation, adj.R2 – Adjusted R2

Categorisation of Instability :

The Categorisation of instability done
based on Cuddy-Della Valle index values as
stated by  Kihla et al.,19; Pokharkar et al.,25

Sihmar32.

Table-3. Categorisation of Instability
Categories Low Medium High
Insteability Index (%) 0 - 15 15 – 30 More than 30

Markov chain analysis :

The first order Markov chain
technique was used to examine the direction
of trade in chicken products. The transitional
probability matrix P must be estimated in order
to perform the Markov chain analysis. The
entries Pij of the matrix P represent the chance
that exports will shift from ith country to jth

country over time. The diagonal members of

the matrix calculate the chance that a country’s
export share will be retained, indicating an
importing country’s loyalty to a certain
country’s product. Shilpashree et al.,30 utilised
a similar technique to investigate the direction
of trade for India’s poultry product exports.

Calculation of virtual water content :

Virtual water content (VWC) of rice
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is the basis to estimate the level of net virtual
water trade between India and its trading
partners. We adopted Mekonnen and Hoekstra’s22

method of virtual water content estimates. To
determine the magnitude of virtual water import
and export, we employed the calculation
method described by Distefano & Kelly8;
Fracasso12; Tamea et al.,35; Yang et al.,38.

The dependent variable is the total
amount of water embodied in the food products
exchanged between India and par tner
countries (i.e, virtual water export / virtual
water import). To obtain the Virtual Water
Content on Export (VWCE) and Virtual Water
Content on Import (VWCI) estimates of
country-specific virtual water content (CVWC)
for various crop products provided by
Mekonnen & Hoekstra,22 are multiplied by the
quantity of exchanged in the international trade
data from the FAOSTAT database31.

VWEpijt  =  Export Quantity ∗  CVWCpi
VWIpijt =  Import Quantity ∗  CVWCpj  

The water footprint is measured for
the study calculated by18 for India. The average
water footprint of rice was 3571 cubic meter
per tonne.

Net Virtual Water Export (NVWT) (Trade
balance) :

    The net virtual water export is defined as

NVMT = (VWCE ∗  Export volume) −

 ( VWCI ∗  Import volume) 

This formula will give the net balance
of virtual water trade for Indias rice trade,

representing the net export (positive value) or
net import (negative value) of water embodied
in rice trade.

Estimation of gravity model india’s virtual
water trade for Rice export :

The gravity model of trade is a model
of bilateral trade interactions where quantity
and distance between nations effects enter
multiplicatively12,14.

Gravity model specification :

The gravity model for trade is
commonly expressed as:

ܶ݅ ݆ =  
ߙ݅ܲܦܩ  x ߚ݆ܲܦܩ

݆݅ܦ
ߛ  

Where,
Tij  - Trade flow from country i to

country j, GDPi and GDPj – GDPs of the exporting
and importing countries, Dij is the distance
between them and A, α,  β and γ are
parameters to be estimated.

virtual water trade for rice, the gravity
model was extended by including variables
such as total population (Pop) exchange rate
(ER), arable land (AR)

݆݅ܧܥܹܸ  = ߙ݆ܲܦܩ ݔ ܣ ݆ܲ ݔ 
ߚ ݆݅ܦ ݔ 

ߛ ߜ݆ܴܧ ݔ  ߳ܮ݆ܣ ݔ   

Where,

VWCEij  - Virtual water content of
rice exported from India to country j, GDPj  -
GDP of the importing country, Popj - Population
of the importing country, Dij-Distance between
India and the importing country, ERj- Exchange
rate of the importing country, ALj - Arable land



in the importing country and A, α, β, γ, δ and υ
are parameters to be estimated.

Gravity model estimation :

Panel data regression techniques used
to estimate the parameters of the gravity
model. Gretl software (version 2024c) was
used to estimate Ordinary Least Squares
(OLS), fixed effects models was employed to
avoid heteroscedasticity in the panel data,
decided on the nature of the data and the
results of statistical tests (Breusch – Pagan
test).

݆݅ܧܥܹܸ ݈݊ = (ܣ) ݈݊  + ݆ܲܦܩ) ݈݊ ߙ ) + ݆ܲ) ݈݊ ߚ  )

+ ܦ݆) ݈݊ ߛ  ) + ݆ܴܧ) ݈݊ ߜ  ) + ܣ) ݈݊ ߳  ݆ܴ ) ݆݅ݑ +

This approach will help in understan-
ding how different factors impact the virtual
water trade in rice and guide water resource
management decisions.

The growth, instability, transitional
probability matrix, net virtual water status and
gravity model of virtual water trade analysis
were estimated for Indias rice trade between
2014 to 2023. The results were furnished from
table-4 to table-7.

Table-4. Growth & Instability of India’s major rice importers (2014-2023) (per cent)
Importing Countries CGR Ix Category of Instability
Saudi Arabia 0.69** 14.54 Low
Iran 1.25** 23.92 Medium
Benin 12.68** 20.48 Medium
Senegal 4.52** 40.07 High
Nepal 7.34** 31.92 High
Bangladesh -1.72NS 118.78 High
UAE -2.98** 23.09 Medium
Côte d’Ivoire 14.78** 32.88 High
Iraq 6.11** 30.93 High
Guinea 9.72** 20.36 Medium
India’s total export 8.46** 21.00 Medium

The growth rate and instability index
of India’s major rice importers from 2014 to
2023 were presented in table 4. The growth
rate (CGR) and instability index (Ix) provide
insights into the trends and stability of rice
imports by various countries over the years.
Except Bangladesh, all other importing counties
have significant growth rate. West African
countries such as Côte d’Ivoire (14.78 per
cent), Benin (12.68 per cent) and Senegal (4.25

per cent) shown high growth rates but also
considerable instability, because rice is the
staple food grain in these countries9 by market
sensitivity, high distance trade and local
conditions. Rakotoarisoa (2011) emphasizes
that West African nations, including Benin and
Côte d’Ivoire, have a high dependency on
imported rice due to limited domestic production
capacity. This dependence is reflected in the
high stability of rice exports to these countries.
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Saudi Arabia (0.69 per cent) and Iran (1.25
per cent) demonstrate moderate significant
growth with substantial fluctuations, influenced
by geopolitical and economic factors26.

Nepal (7.34 per cent) and Bangladesh
present contrasting trends; while Nepal shows
growth with variability, Bangladesh (-1.72 per
cent) has a non-significant declining growth
with high instability (118.78), linked to increased
domestic production in recent years and
changing policies. The UAE and also highlight
the diverse dynamics of rice imports, with the
former showing a decline and the latter
significant growth and fluctuations, reflecting
broader market shifts.

Overall, India’s total rice export growth
rate of 8.46 per cent and an instability index
of 21.00, reflect a positive trend with some
fluctuations, influenced by both domestic and

international market dynamics. This result
aligns with Shailza et al.,28 CGR results for
2011-2020 was 5.74 per cent and instability
was 16.95 per cent and Suman,33 reported that
CGR and instability index for basmati rice
export for 2001-2020 was 19.96 and 43.98 per
cent respectively and non-basmati rice CGR
and instability index was 12.74 and 63.46 per
cent respectively. This clearly shows that rice
export has significantly increasing over the
years.

Markov chain analysis :

This analysis provides insights into the
stability and shifts in trade patterns, helping to
identify emerging markets and potential areas
for strategic trade interventions2.  The
transitional probability matrix results were
presented in table-5.

Table-5. Transitional Probability Matrix for India’s Rice Export (2013-2024)

Countries Saudi Iran Benin Sen- Nepal Bang UAE Côte Iraq Guinea
Arabia egal ladesh d’Ivoire

Saudi 0.024 0.148 0.059 0.095 0.062 0.439 0.079 0.017 0.033 0.042
Arabia

Iran 0.174 0.057 0.000 0.062 0.162 0.000 0.141 0.096 0.272 0.037
Benin 0.017 0.028 0.375 0.227 0.000 0.001 0.008 0.140 0.001 0.203
Senegal 0.035 0.129 0.115 0.112 0.003 0.060 0.156 0.093 0.215 0.083

Nepal 0.084 0.000 0.156 0.111 0.353 0.005 0.036 0.155 0.004 0.095
Bangladesh 0.286 0.129 0.134 0.051 0.065 0.022 0.097 0.058 0.086 0.071
UAE 0.357 0.330 0.039 0.042 0.110 0.047 0.064 0.000 0.000 0.009

Côte d’Ivoire 0.000 0.043 0.320 0.340 0.000 0.000 0.000 0.133 0.000 0.165
Iraq 0.168 0.265 0.161 0.179 0.076 0.002 0.077 0.030 0.002 0.040
Guinea 0.462 0.028 0.196 0.000 0.023 0.024 0.171 0.000 0.020 0.076
SSP 0.140 0.109 0.160 0.124 0.074 0.077 0.083 0.075 0.070 0.088
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The analysis of the transitional
probability matrix for India’s rice export from
2013 to 2024 sheds light on the dynamics of
the export market and the stability of trade
relationships with major importing countries.
The probabilities indicate how exports are
redistributed among various countries,
reflecting both market stability and potential
shifts in trade preferences. Côte d’Ivoire, Benin
and Senegal show significant transition
probabilities of 0.133, 0.375 and 0.115,
respectively, with Benin demonstrating a stable
yet growing demand for Indian rice. Kumar20

reported that West African countries’ rice
imports are highly sensitive to global market
changes and local economic conditions, which
is reflected in these probabilities. Saudi Arabia
and Iran exhibit moderate transition probabilities
of 0.024 and 0.174, respectively, signalling
relatively stable but moderate trade volumes
with India. Nepal’s high transition probability
of 0.353 indicates a strong and stable market
for Indian rice, supported by, who noted
Nepal’s increasing dependency on Indian rice

imports due to seasonal variations and trade
policies. Bangladesh, with a negative transition
probability of -1.72 per cent, reflects a declining
trend in rice imports. Since, the domestic
production increased and changes in import
policies.

Saudi Arabia lost its 43.9 per cent
shares to Bangladesh and gained 46.2 per cent
from Guinea. Likewise, each countries gains
and loss to rest of the countries. Overall, India’s
total export transition probabilities reveal a
positive trend with an average transition
probability of 8.46 per cent, reflecting India’s
strong export performance despite some
fluctuations37 emphasized that India’s rice
export patterns are influenced by both domestic
production variability and international market
dynamics, which is consistent with the observed
probabilities. The Steady State Probabilities
means if the trends continue like this in future
Benin will be most promising importer with 16.4
per cent, followed by Saudi Arabia (14.0 per
cent) and Senegal (12.4 per cent).

Table-6. Virtual Water Content of Rice Trade – 2014 to 2023         (m3 per year)
Year VWC on Export (VWCE) VWC on Import (VWCI) NVWC
2014 39859555565 6420658 39853134907
2015 39105671042 4670868 39101000174
2016 35378114831 3571000 35374543831
2017 43282444769 6699196 43275745573
2018 41657946875 23311488 41634635387
2019 35064088233 20693945 35043394288
2020 52181601742 16080213 52165521529
2021 75990547897 13462670 75977085227
2022 79406845035 42255643 79364589392
2023 63795857864 21454568 63774403296
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The virtual water content (VWC) of
rice trade from 2014 to 2023, as illustrated in
table 6, gives critical insights into the water
consumption contained in India’s rice export
and import operations. The VWCE has
increased from 3,985,955 m³ in 2014 to a peak
of 7,940,684 m³ in 2022, then slightly decreased
to 6,379,585 m³ in 2023. But this development
also highlights how much water is needed to
grow rice, which raises questions about how
sustainable water supplies may be, especially
in areas with limited water supplies22.

VWCI, on the other hand, has exhibited
more fluctuations, indicating variability in import
volumes over the years but it shares less than
one per cent every year. The relatively stable
but fluctuating import levels highlight the
complexities of balancing domestic production
with import needs10.

Over the years, Net Virtual Water
Content (NVWC) has generally remained
positive, indicating that India is a net exporter
of virtual water through rice trade. This is
significant as it implies that India is transferring
substantial volumes of water embedded in rice
to other countries, which can have both
economic benefits and environmental loss. The
positive NVWC values highlight India’s
contribution to global food security by
providing water-intensive rice to countries that
may lack sufficient water resources for their
own production15. Continuous export of virtual
water can lead to local water stress, especially
in regions where water scarcity is already a
concern5. These findings suggest that while
rice exports are economically beneficial, they
must be balanced with strategies to ensure
long-term water sustainability. These strategies

could include improving irrigation efficiency,
adopting drought-resistant rice varieties, and
promoting water-saving techniques in
agriculture4. India effectively exports large
volumes of virtual water by exporting rice,
contributing to the global water trade network.
This has broader implications for global water
security, as highlighted by studies from13,27

emphasizing the importance of integrated
water management strategies that consider
both local and global water dynamics.

Heteroscedasticity :
Breusch-Pagan test :

The Breusch – Pagan test employed
to detect heteroskedasticity in a random effect
model of regression analysis.

Asymptotic test statistic: Chi-square(1) =
1.06743 p-value = 0.301527

The Null hypotheses was fixed as
variance of the unit – specific error is equal to
zero (no heteroscedasticity). The test static
value was 1.0674 with the p value was 0.30, it
is higher than 5 per cent significance level, it
means the test statistic was non-significant and
rejecting null hypothesis.  This clearly indicates
that there is no significant evidence of
heteroskedasticity in this regression model. So,
we followed random effect model in this study.

The estimation of the gravity model
for India’s rice trade, as presented in Table 7,
elucidates several key factors influencing
export dynamics. The gravity model includes
coefficients for GDP of the importing country
(ln imp GDP), geographical distance (ln dis),
population of the importing country (ln imp
pop), arable land (ln ara land), and exchange
rate (ln imp exc. rate).
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Table-7. Estimation of Gravity model of
Indias Rice Trade

Variables Coefficient
Cons 29.2798***

(2.7813)
ln imp GDP 0.3368***

(0.0337)
ln dis 0.4027**

(0.1439)
ln imp pop 1.2050***

(0.2600)
ln ara land 0.5159***

(0.1273)
ln imp exc. rate 0.0193NS

(0.0351)
R square 0.1993
F stat 14.6796***
Observations 100
No. of years 10

#standard error in parentheses; Level of
significant *** p<0.01 & ** p <0.05 and NS –
Non-significant

The constant (Cons) at 29.2798 is
highly significant, indicating a substantial
baseline effect on India’s rice exports. The
coefficient for ln imp GDP is positive and highly
significant at 0.3368, suggesting that countries
with higher GDPs import more rice from India.
This aligns with Head & Mayer14, who noted
the significance of economic size in trade
volumes. The positive relationship reflects that
wealthier nations have greater purchasing
power and demand for rice imports.

Geographical distance (ln dis) has a
negative coefficient of -0.4027, significant at

the 0.05 level. This inverse relationship is
consistent with traditional gravity model theory,
which posits that greater distances reduce
trade volumes due to higher transportation
costs7. This finding is corroborated by Anderson
& Van Wincoop2,  who emphasized the
frictional effect of distance on trade. The
importer population (ln imp pop) is negative
and highly significant at -1.2050. This suggests
that larger populations may not correlate with
higher rice imports, possibly due to self-
sufficiency in food production in populous
countries, as noted by (Timmer et al., 1983).
This inverse relationship could also be
attributed to the diverse dietary patterns and
agricultural policies in countries with large
populations.

The positive and significant coefficient
for arable land (ln ara land) at 0.5159 indicates
that countries with more arable land tend to
import more rice. This might be due to these
countries’ efforts to meet their consumption
needs through imports, as supported by studies
like (Timmer et al., 1983), which found that
agricultural land availability influences import
volumes. The coefficient for the exchange rate
(ln imp exc. rate) is non-significant at 0.0193,
suggesting that short-term fluctuations in
exchange rates do not have a substantial
impact on rice trade volumes. This finding
aligns with Chen & Rogoff 6, who reported
that certain agricultural commodities, including
rice, are relatively insulated from exchange
rate volatility.

The model’s R-squared value of
0.1993 indicates that approximately 20 per cent
of the variance in India’s rice exports can be
explained by the included variables. Despite
this moderate explanatory power, the F-statistic
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of 14.6796 is highly significant, affirming the
overall robustness of the model. This suggests
that while the model captures key determinants
of rice trade, other factors not included in the
model may also play a role.

India’s rice export demonstrates
substantial growth, driven by high demand in
specific regions, yet marked by variability due
to diverse market conditions. Notably, West
African nations display strong growth rates in
imports but also experience medium to high
instability, likely influenced by rice as staple
food in their diets and sensitivity to global
market shifts. In contrast, Middle Eastern
countries have moderate growth rates coupled
with significant fluctuations over the years,
reflecting the impact of geopolitical factors on
their import dynamics. Nepal’s consistent
demand for Indian rice underscores a stable,
growing dependency, while Bangladesh,
influenced by rising domestic production,
shows a declining import trend. The transitional
probability matrix, highlight the shifts in trade
preferences among India’s major importers, with
West African countries generally maintaining
stable import, and Nepal showing strong import
stability. The steady state projections suggest
West African nations and Saudi Arabia will
continue to be reliable markets for India’s rice
exports. The gravity model further supports
these observations by revealing key factors
shaping India’s rice export dynamics. Countries
with higher GDPs exhibit higher demand, as
wealthier nations have greater purchasing
power. Distance negatively impacts trade
volumes, as expected due to transportation
costs, while larger populations correlate
negatively with imports, likely due to a greater
capacity for self-sufficiency in populous
countries. Arable land availability positively

influences import volumes, suggesting that
agricultural land availability within these
countries may bolster rice demand, despite
exchange rate effects being less impactful in
the short term.

Overall, the findings emphasize a
dynamic but promising outlook for India’s rice
exports. The combined impact of economic,
geographical and agricultural factors creates
a complex yet robust market environment. This
export trend shows that India will be net
exporter of rice export. Since it is a high-water
intensive crop, some decisions or policies need
to be drawn to protect water sustainability.
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